

DATA SHEET

HIGH VOLTAGE CHIP RESISTORS RV series (Pb Free) 5%, 1%

sizes 0805/1206/2512

<u>SCOPE</u>

This specification describes RV0805/1206/2512 high voltage chip resistors with lead-free terminations made by thick film process.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO ORDERING CODE

CTC CODE

RV XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0805/1206/2512

(2) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$

(3) PACKAGING TYPE

R = Paper/PE taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

(6) RESISTANCE VALUE

5R6, 56R, 560R, 56K, 27M

(7) RESISTOR TERMINATIONS (a)

L = Lead-free terminations (matte tin)

APPLICATIONS

- Converter
- Printer equipment
- Battery charger
- Computer
- Automotive industry
- Power supply

ORDERING EXAMPLE

The ordering code of a RV1206 chip resistor, value IM Ω with ±5% tolerance, supplied in 7-inch tape reel is: RV1206JR-071ML.

NOTE

- a. The "L" at the end of the code is only for ordering. On the reel label, the standard CTC or 12NC will be mentioned an additional stamp "LFP"= lead free production.
- b. Products with lead in terminations fulfil the same requirements as mentioned in this datasheet.
- c. Products with lead in terminations will be phased out in the coming months (before July 1st, 2006)

Chip Resistor Surface Mount

MARKING

RV0805/1206/2512

Γig. 1 Value=10 KΩ	E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros
1002	Both E-24 and E-96 series: 4 digits
Fig. 2 Value=10 KΩ	First three digits for significant figure and 4th digit for number of zeros

For marking codes, please see EIA-marking code rules in data sheet "Chip resistors marking".

CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a high voltage resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with an overcoat and printed with the resistance value. Finally, the two external terminations (matte tin) are added. See fig. 3.

DIMENSIONS

- . . . -

lable	le I For outlines see fig. 3				
TYPE	L (mm)	W (mm)	H (mm)	l⊨(mm)	l2 (mm)
RV0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
RV1206	3.10 ±0.10	1.60 ±0.15	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
RV2512	6.35 ±0.10	3.10 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20

OUTLINES

Chip Resistor Surface Mount RV SERIES 0805/1206/2512 (Pb Free)

ELECTRICAL CHARACTERISTICS

Table	2			CHAR	ACTERISTICS	5	
TYPE	RESISTANCE RANGE	Rated Power	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
RV0805	5% (E-24) 100K Ω to 10M Ω 1% (E-24/E-96) 100K Ω to 10M Ω	1/8 W		400 V	800 V	800 V	
RV1206	5% (E-24) 100K Ω to 27M Ω 1% (E-24/E-96) 100K Ω to 10M Ω	1/4 W	_55 °C to +155 °C	500 V	I,000 ∨	1,000 ∨	±200 ppm/°C
RV2512	5% (E-24) 4.7M Ω to 16M Ω	IW		500 V	1,000 ∨	1,000 ∨	

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

ENVIRONMENTAL DATA

For material declaration information (IMDS-data) of the products, please see the separated info "Environmental data" conformed to EU RoHS.

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and	packaging quantity			
PACKING STYLE	REEL DIMENSION	R∨0805	RV1206	RV2512
Paper/PE taping reel (R)	7" (178 mm)	5,000	5,000	
Embossed taping reel (K)	7" (178 mm)			4,000

NOTE

1. For Paper/PE/Embossed tape and reel specification/dimensions, please see the special data sheet "Packing" document.

FUNCTIONAL DESCRIPTION

PRODUCT CHARACTERIZATION

Standard values of nominal resistance are taken from the E24 series or E96 series for resistors with a tolerance of 5% or 1%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

OPERATING TEMPERATURE RANGE

Range: -55°C to +155°C

LIMITING VALUES

 Tab	le	4	

TYPE	LIMITING VOLTAGE (I)	LIMITING POWER ⁽²⁾
	(V)	(W)
VR0805	400	1/8
VR1206	500	1/4
VR2512	500	I

NOTES

- The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-8" and "IEC publication 60115-2".
- 2 Each type rated power at 70°C.

POWER RATING

The power that the resistor can dissipate depends on the operating temperature; see Fig. 4.

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

 $V = \sqrt{P \times R}$

Where

- V = Continuous rated DC or AC (rms) working voltage (V)
- P = Rated power (W)
- $R = Resistance value (\Omega)$

YAGEO

TESTS AND REQUIREMENTS

EST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature	MIL-STD-202F-method 304;	At +25/–55 °C and +25/+125 °C	Refer to table 2
Coefficient of	JIS C 5202-4.8	Formula:	
Resistance (T.C.R.)			
(T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t ₁ =+25 °C or specified room temperature	
		t ₂ =–55 °C or +125 °C test temperature	
		R ₁ =resistance at reference temperature in ohms	
		R_2 =resistance at test temperature in ohms	
Thermal Shock	MIL-STD-202F-method 107G;	At -65 (+0/-10) °C for 2 minutes and at +155	±(0.5%+0.05 Ω) for 1% tol.
	IEC 60115-1 4.19	(+10/–0) °C for 2 minutes; 25 cycles	$\pm(1.0\%+0.05\ \Omega)$ for 5% tol.
Low	MIL-R-55342D-Para 4.7.4	At -65 (+0/-5) °C for I hour; RCWV applied	±(0.5%+0.05 Ω) for 1% tol .
Temperature Operation		for 45 (+5/–0) minutes	$\pm(1.0\%{+}0.05~\Omega)$ for 5% tol.
			No visible damage
Short Time	MIL-R-55342D-Para 4.7.5;	2.5 × RCWV applied for 5 seconds	±(1.0%+0.05 Ω) for 1% tol.
Overload	IEC 60115-1 4.13	(Votalge $\leq 2 \times V_{max}$) at room temperature	$\pm(2.0\%{+}0.05~\Omega)$ for 5% tol.
			No visible damage
Insulation	MIL-STD-202F-method 302;	One DC voltage applied for 1 minute	≥10 GΩ
Resistance	IEC 60115-1 4.6.1.1	Details see below table 6	
Dielectric	MIL-STD-202F-method 301;	One DC voltage applied for 1 minute	No breakdown or flashover
Withstand Voltage	IEC 60115-1 4.6.1.1	Details see below table 6	
Resistance to	MIL-STD-202F-method 210C;	Unmounted chips; 260 ±5 °C for 10 ±1	±(0.5%+0.05 Ω) for 1% tol.
Soldering	IEC 60115-1 4.18	seconds	\pm (1.0%+0.05 Ω) for 5% tol.
Heat			No visible damage
Life	MIL-STD-202F-method 108A;	At 70±2 °C for 1,000 hours; RCWV applied for	±(1%+0.05 Ω) for 1% tol.
-	IEC 60115-1 4.25.1	1.5 hours on and 0.5 hour off	±(3%+0.05 Ω) for 5% tol.

Table 5 Test condition, procedure and requirements (continued)

ST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Solderability	MIL-STD-202F-method 208A;	Solder bath at 245±3 °C	Well tinned (≥95% cove	ered)
	IEC 60115-1 4.17	Dipping time: 2±0.5 seconds	No visible damage	
Bending	JIS C 5202.6.14;	Resistors mounted on a 90 mm glass epoxy	±(1.0%+0.05 Ω) for 1%	6 tol.
Strength	IEC 60115-1 4.15	resin PCB (FR4)	\pm (1.0%+0.05 Ω) for 5%	6 tol.
		Bending: 5 mm	No visible damage	
Resistance to	MIL-STD-202F-method 215;	lsopropylalcohol (C ₃ H ₇ OH) or dichloromethane	No smeared	
Solvent	IEC 60115-1 4.29	(CH_2CI_2) followed by brushing		
Noise	JIS C 5202 5.9;	Maximum voltage (V _{ms}) applied.	Resistors range	Value
	IEC 60115-1 4.12		R < 100 Ω	10 dE
			$100 \ \Omega \leq R < K\Omega$	20 dE
			$ K\Omega \le R < 0 K\Omega$	30 dE
			$10 \text{ K}\Omega \leq \text{R} < 100 \text{ K}\Omega$	40 dE
			$100 \text{ K}\Omega \leq \text{R} < 1 \text{ M}\Omega$	46 dE
			$I M\Omega \le R \le 22 M\Omega$	48 dE
Humidity	JIS C 5202 7.5;	I,000 hours; 40±2 °C; 93(+2/–3)% RH	±(0.5%+0.05 Ω) for 1%	s tol
(steady state)	IEC 60115-8 4.24.8	RCWV applied for 1.5 hours on and 0.5 hour off	$\pm (2.0\% \pm 0.05 \ \Omega)$ for 5% tol.	
Leaching	EIA/IS 4.13B;	Solder bath at 260±5 °C	No visible damage	
	IEC 60115-8 4.18	Dipping time: 30±1 seconds	5	
Intermittent	JIS C 5202 5.8	At room temperature; 2.5 × RCWV applied for	±(1.0%+0.05 Ω) for 1%	6 tol.
Overload		I second on and 25 seconds off; total 10,000 cycles	$\pm(2.0\%{+}0.05~\Omega)$ for 5% t	
Resistance to Vibration	On request	On request		
Moisture	MIL-STD-202F-method 106F;	42 cycles; total 1,000 hours	±(0.5%+0.05Ω) for 1%	tol.
Resistance	IEC 60115-1 4.24.2	Shown as Fig. 5	$\pm(2.0\%+0.05\Omega)$ for 5% tol.	
Heat			No visible damage	

Table 6	Criteria of rated continue	d working voltage and overlo	oad voltage
---------	----------------------------	------------------------------	-------------

TYPE	RV0805	RV1206	RV2512
Voltage (DC/unit: V)	800	1,000	I ,000

YAGEO

Chip Resistor Surface Mount

8

RV

SERIES

-www.yageo.com

Chip Resistor Surface Mount RV SERIES 0805/1206/2512 (Pb Free)

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	Feb 14, 2006	-	- New datasheet for high voltage chip resistors sizes of 0805/1206/2512, 5%,
			1% tolerance with lead-free terminations

