

RS9116 n-Link[™] and WiSeConnect[™] Single Chip Wi-Fi® and Dual-mode Bluetooth® 5 Wireless Connectivity Solutions Overview

1.1 Features

Wi-Fi

- Compliant to single-spatial stream IEEE 802.11 b/g/n with single band support
- Support for 20 MHz channel bandwidth
- Transmit power up to +20 dBm with integrated PA
- Receive sensitivity as low as -98.5 dBm
- Data Rates:- 802.11b: Up to 11 Mbps ; 802.11g: Upto54 Mbps ; 802.11n: MCS0 to MCS7
- Operating Frequency Range:- 2412 MHz 2484 MHz

Bluetooth

- Transmit power up to +20 dBm with integrated PA
- Receive sensitivity:- LE: -95 dBm, LR 125 Kbps: -106 dBm
- Compliant to dual-mode Bluetooth 5
- <8 mA transmit current in Bluetooth 5 mode, 2 Mbps data rate
- Data rates: 125 Kbps, 500 Kbps, 1 Mbps, 2Mbps, 3 Mbps
- Operating Frequency Range:- 2.402 GHz 2.480 GHz
- Bluetooth 2.1 + EDR, Bluetooth Low Energy 4.0 / 4.1 / 4.2 / 5.0
- Bluetooth Low Energy 1 Mbps, 2 Mbps and Long Range modes
- Bluetooth Low Energy Secure connections
- Bluetooth Low Energy supports central role and peripheral role concurrently.
- Bluetooth auto rate and auto TX power adaptation
- Scatternet* with two slave roles while still being visible.

RF Features

- Integrated baseband processor with calibration memory, RF transceiver, high-power amplifier, balun and T/R switch
- Dual external antenna (diversity supported)

Power Consumption

7 x 7 x 0.85

- Wi-Fi Standby Associated mode current: 50uA @ 1 second beacon listen interval
- Wi-Fi 1 Mbps Listen current: 14mA
- Wi-Fi LP chain Rx current: 19mA
- Deep sleep current <1uA, Standby current (RAM retention) < 10uA

Operating Conditions

- Wide operating supply range: 1.75 V to 3.63 V
- Operating temperature: -40°C to +85°C (Industrial grade)

Size

• QMS: 7 mm x 7 mm x 0.85 mm

Evaluation Kit

Single Band EVK: RS9116X-SB-EVK1

Software Operating Modes

- Hosted mode (n-Link[™]): Wi-Fi stack, Bluetooth stack and profiles and all network stacks reside on the host processor
- Embedded mode (WiSeConnect[™]): Wi-Fi stack, TCP/IP stack, IP modules, Bluetooth stack and some profiles reside in RS9116; Some of the Bluetooth profiles reside in the host processor

Hosted Mode (n-Link[™])

- Available host interfaces: SDIO 2.0 and USB HS
- Application data throughput up to 50 Mbps (Hosted Mode) in 802.11n with 20MHz bandwidth.
- Host drivers for Linux
- Support for Client mode, Access point mode (Upto 16 clients), Concurrent Client and Access Point mode, Enterprise Security
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

Embedded Mode (WiSeConnect™)

- Available host interface: UART, SPI, SDIO*, and USB CDC
- TCP throughput > 20Mbps over SDIO host interface with 20 MHz bandwidth

- Support for Embedded Client mode, Access Point mode (Upto 8 clients), Concurrent Client and Access Point mode, and Enterprise Security
- Supports advanced security features: WPA/WPA2-Personal and Enterprise*
- Integrated TCP/IP stack (IPV4/IPV6), HTTP/HTTPS, DHCP, ICMP, SSL 3.0/TLS1.2, WebSockets, IGMP, DNS, DNS-SD, SNMP, FTP Client, MQTT*
- Bluetooth inbuilt stack support for L2CAP, RFCOMM, SDP, SPP, GAP
- Bluetooth profile support* for GAP, SDP, L2CAP, RFCOMM, SPP, GATT, PBAP
- Wireless firmware upgrade and provisioning
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

Wireless Co-Existence Modes

- Wi-Fi Access Point, Wi-Fi Client
- Wi-Fi Access Point + Wi-Fi Client
- Wi-Fi (Client / AP) + Bluetooth 5
- Wi-Fi (Client / AP) + Bluetooth Low Energy
- Wi-Fi (Client) + Bluetooth 5 + Bluetooth Low Energy

Security

- Accelerators: AES128/256 in Embeded Mode
- WPA/WPA2-Personal, WPA/WPA2 Enterprise for Client*
- Secure Firmware upgrade* with backup

Software and Regulatory Certification

- Wi-Fi Alliance*
- Bluetooth Qualification*

* For detailed list of Software features, and available profiles, please refer the Software Reference Manuals, or, Contact Silicon Labs for availability.

All power and performance numbers are under ideal conditions.

1.2 Applications

Wearables:

SmartWatches, Wristbands, Fitness Monitors, Smart Glasses, etc.

SmartHome:

Smart Locks, Motion/Entrance Sensors, Water Leak sensors, Smart plugs /switches, LED lights, Door-bell cameras, Washers/Dryers, Refrigerators, Thermostats, Consumer Security cameras, Voice Assistants, etc.

Other consumer applications:

Toys, Anti-theft tags, Smart dispensers, Weighing scales, Blood pressure monitors, Blood sugar monitors, Portable cameras, etc.

Other Applications (Medical, Industrial, Retail, Agricultural, Smart-City, etc.):

Healthcare Tags, Medical patches/pills, Infusion pumps, Sensors/actuators in Manufacturing, Electronic Shelf labels, Agricultural sensors, Product tracking tags, Smart Meters, Parking sensors, Street LED lighting, Automotive Aftermarket, Security Cameras, etc.

1.3 Description

Silicon Labs' RS9116 single band QMS provide a comprehensive multi-protocol wireless connectivity solution including 802.11 b/g/n (2.4GHz), and dual-mode Bluetooth 5. The SoC offers high throughput, extended range with power-optimized performance. The SoCs are FCC, IC, and ETSI/CE certifiable.

1.4 Block Diagrams

Figure 1 RS9116 Connectivity Hardware Block Diagram

Figure 2 Hosted Software Architecture

Figure 3 Embedded Software Architecture

1.5 Device Information

Part Number	Flash Type	Package Type	Package Size	Silicon Rev	Firmware Version					
RS9116W-SB00-QMS-X24	Internal	QFN(84)	7 mm x 7 mm x 0.85 mm	1.3	1.2.24					
RS9116W-SB00-QMS-B24	Internal	QFN(84)	7 mm x 7 mm x 0.85 mm	1.4	1.2.24					
RS9116W-SB00-QMS-B2A*	Internal	QFN(84)	7 mm x 7 mm x 0.85 mm	1.4	2.0					
RS9116N-SB00-QMS-X00	Internal	QFN(84)	7 mm x 7 mm x 0.85 mm	1.3	Not Applicable					
RS9116N-SB00-QMS-B00	Internal	QFN(84)	7 mm x 7 mm x 0.85 mm	1.4	Not Applicable					
* Contact Silicon Labs for availability.										

Table of Contents

1	Overview	· · · · · ·	1
1.1	Features	'	1
1.2	Applications		2
13	Description		2
14	Block Diagrams		3
1.5			1
1.0			т
2	Pin Diagrams		7
2.1	RF & Control Interfaces	8	3
2.2	Power & Ground Pins	8	3
2.3	Host & Peripheral Interfaces	. 10	C
2.4	Miscellaneous Pins	20	C
2	PS0116 OMS SoC Specifications	2	2
3	Absolute Movimum Defines	Z	2 2
3.1 2.2	Absolute Maximum Ratings	Zi	2
3.Z	DC Characteristics	∠.	2 1
3.3	DU Unaraciensilos	Zʻ	+
3.3.1	Resel PIII	∠' ?	+ 5
333	Digital Input Output Signals	2	a
334	LISB	2	g
3.3.5	Pin Capacitances	2	9
3.4	AC Characteristics	2	9
3.4.1	Clock Specifications	. 2	9
3.4.2	SDIO 2.0 Slave	3	1
3.4.3	SPI Slave	3	2
3.4.4	USB	3	4
3.4.5	UART	3	4
3.4.6	I2C Master and Slave	3	5
3.4.7	I2S/PCM Master and Slave	3	õ
3.4.8	GPIO pins	3	/
3.5		3	/ 0
3.5.1	WLAN 2.4 GHZ Transmiller Characteristics on High Derformance (HD) RE Chain	د ۸	5
3.5.2	WLAN 2.4 GHZ Receiver Characteristics on Low Power (LP) RF Chain	4 /	ר ר
354	Reluetooth Transmitter Characteristics on High-Performance (HP) RF Chain	. . 4	Δ
3.5.5	Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain	. 4	8
3.5.6	Bluetooth Receiver Characteristics on High-Performance (HP) RF Chain	. 4	9
3.5.7	Bluetooth Receiver Characteristics on Low-Power (LP) RF Chain	5	1
3.6	Typical Current Consumption		4
3.6.1	3.3V	5	4
3.6.2	1.85V	5	6
Л	RS9116 OMS SoC Detailed Description	5	a
- / 1	Overview	50	a
12	Chinset Festures		э а
4.Z		0	9 0
422	Bluetooth	5	g
4.2.3	RF Transceiver	6	1
4.2.4	Host Interfaces	6	1
4.2.5	Wireless Coexistence Manager	6	1
4.2.6	Software	6	1
4.2.7	Security	6	2
4.2.8	System Power Supply Configurations	6	2
4.2.9	Power Management	6	3
4.2.1	U Low power modes	6	3
4.2.1	т метногу	0	+
5	RS9116 QMS SoC Reference Schematics, BOM and Layout Guidelines	. 6	5
5.1	RS9116 QMS SoC	6	5
5.1.1	SDIO/SPI/UART	6	5
5.1.2	USB/USB-CDC	6	9
5.1.3	External Flash	7	2
5.1.4	Reduced Front-End Option	7	5
5.2	Layout Guidelines for QMS SoC	78	3
6	RS9116 QMS SoC Storage, Handling and Soldering Conditions		1
-			1

6.1	Recommended Reflow Profile	
6.2	Baking Instructions	
7	Chip Packages	
7.1	Chip with Package Code QMS	
7.1.1	Package Dimensions	
7.1.2	2 Package Outline	
7.1.3	PCB Landing Pattern	
8	RS9116 QMS SoC Ordering Information	
8.1	Chip Packages	
8.2	Ordering Information	
8.2.1	Device Nomenclature	
9	RS9116 QMS SoC Documentation and Support	
10	RS9116 QMS SoC Revision History	

2 Pin Diagrams

RS9116X-SBXX-QMS-ABC

2.1 RF & Control Interfaces

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description
RF_TX	A9	PA2G_AVDD	Output	NA	2.4 GHz RF Output.
RF_RX	A10	RF_AVDD	Inout	NA	2.4 GHz RF Input/Output.
RF_BTTX	A11	RF_AVDD	Output	NA	Bluetooth 10 dBm RF Output.
RESET_N	A31	UULP_VBATT_2	Input	NA	Active-low reset asynchronous reset signal.
POC_IN	A27	UULP_VBATT_1	Input	NA	Power On Control Input.
POC_OUT	B25	UULP_VBATT_1	Output	NA	Power On Control Output.

Table 1 Chip Packages - RF & Control Interfaces

2.2 Power & Ground Pins

Pin Name	Туре	QMS Pin Number	Direction	Description
UULP_VBATT_1	Power	A26	Input	Always-on VBATT Power supply to the UULP domains.
UULP_VBATT_2	Power	A30	Input	Always-on VBATT Power supply to the UULP domains.
RF_VBATT	Power	A12	Input	Always-on VBATT Power supply to the RF.
VINBCKDC	Power	A33	Input	Power supply for the on-chip Buck.
VOUTBCKDC	Power	B29	Output	Output of the on-chip Buck.
VINLDOSOC	Power	B30	Input	Power supply for SoC LDO. Connect to VOUTBCKDC as per the Reference Schematics.
VOUTLDOSOC	Power	A34	Output	Output of SoC LDO.
VINLDO1P8	Power	B31	Input	Power supply for 1.8V LDO.
VOUTLDO1P8	Power	B32	Output	Output of 1.8V LDO.

Pin Name	Туре	QMS Pin Number	Direction	Description
VOUTLDOAFE	Power	B13	Output	Output of AFE LDO.
FLASH_IO_VDD	Power	A2	Input	I/O Supply for Flash. Connect to VOUTLDO1P8 as per the Reference Schematics.
IO_VDD_1	Power	A3	Input	I/O Supply for GPIOs. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
IO_VDD_2	Power	B14	Input	I/O Supply for GPIOs. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
SDIO_IO_VDD	Power	B1	Input	I/O Supply for SDIO I/Os. Refer to the GPIOs section for details on which GPIOs have this as the I/O supply.
ULP_IO_VDD	Power	B33	Input	I/O Supply for ULP GPIOs.
PA2G_AVDD	Power	B8	Input	Power supply for the 2.4 GHz RF Power Amplifier.
RF_AVDD	Power	A8, A14, B11	Input	Power supply for the 2.4 GHz RF and AFE. Connect to VOUTBCKDC as per the Reference Schematics.
PLL_AVDD	Power	NA	Input	Power supply for the on-chip PLLs. Connect to VOUTBCKDC as per the Reference Schematics.
AUX_AVDD	Power	B34	Output	Output supply for the Analog peripherals.
UULP_VOUTSCDC	Power	B23	Output	UULP Switched Cap DCDC Output.
UULP_VOUTSCDC_RE TN	Power	A28	Output	UULP Retention Supply Output.
UULP_AVDD	Power	NA	Input	Power supply for the always-on digital and ULP peripherals. Connect to UULP_VOUTSCDC as per the Reference Schematics.
C_VDD	Power	B2, A18, B38	Input	Power supply for the digital core. Connect to the VOUTLDOSOC as per the Reference Schematics.
USB_AVDD_3P3	Power	A39	Input	Power Supply for the USB interface.
USB_AVDD_1P1	Power	B35	Input	Power supply for the USB core.
PMU_AGND	Ground	GND Paddle	GND	Ground corresponding to PMU_AVDD.
VSSBCKDC	Ground	GND Paddle	GND	Ground corresponding to VINBCKDC and VOUTBCKDC

Pin Name	Туре	QMS Pin Number	Direction	Description
IO_DGND	Ground	GND Paddle	GND	Ground corresponding to the I/O power supply pins.
PA_AGND	Ground	GND Paddle	GND	Ground corresponding to the RF Power Amplifier supply.
RF_AGND	Ground	GND Paddle	GND	Ground corresponding to the RF supply.
RFPLL_AGND	Ground	GND Paddle	GND	Ground corresponding to the supply for PLL in the RF.
PLL_AGND	Ground	GND Paddle	GND	Ground corresponding to the on-chip PLL's supply.
VBATT_AGND	Ground	GND Paddle	GND	Ground corresponding to the VBATT supply.
UULP_VBATT_AGND_1	Ground	GND Paddle	GND	Ground corresponding to the UULP_VBATT_1 supply.
UULP_VBATT_AGND_2	Ground	GND Paddle	GND	Ground corresponding to the UULP_VBATT_2 supply.
UULP_AGND	Ground	GND Paddle	GND	Ground corresponding to the UULP_AVDD supply.
AUX_AGND	Ground	GND Paddle	GND	Ground corresponding to the AUX_AVDD supply.
GND	Ground	GND Paddle	GND	Common ground pins.

 Table 2 Chip Packages - Power and Ground Pins

2.3 Host & Peripheral Interfaces

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
GPIO_6	B20	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ
					This pin can be configured by software to be any of the following
					I2S_DOUT - I2S interface output data.
					PCM_DOUT - PCM interface output data.
GPIO_7	B19	IO_VDD_1	Inout	HighZ	Default: HighZ
					Sleep: HighZ

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,}	4			
					This pin can be c	configured by software to be any of the	following		
					• I2S_CLK - I2	S interface clock.			
					PCM_CLK -	PCM interface clock.			
UART1_RX	A20	IO_VDD_1	Inout	HighZ	Host	Default	Sleep		
					UART	UART1_RX - UART Host interface serial input.	HighZ		
					Non UART	HighZ	HighZ		
					The UART interface is supported only in WiSeConnect™.				
UART1_TX	A21	IO_VDD_1	Inout	HighZ	Host	Default	Sleep		
					UART	UART1_TX - UART Host interface serial output.	HighZ		
					Non UART	HighZ	HighZ		
					The UART interfa	ace is supported only in WiSeConnect	TM_		
GPIO_10	B3	IO_VDD_1	Inout	HighZ	Default: HighZ				
					Sleep: HighZ				
					This pin can be c	configured by software to be any of the	following		
					• I2S_DIN: I2S	interface input data.			
					• PCM_DIN - F	PCM interface input data.			
GPIO_11	B4	IO_VDD_1	Inout	HighZ	Default: HighZ.				
					Sleep: HighZ				
					This pin can be c	configured by software to be any of the	following		
					• I2S_WS: I2S	interface Word Select.			
					PCM_FSYNG	C: PCM interface Frame Synchronizat	ion signal.		
GPIO_12	A4	IO_VDD_1	Inout	HighZ	Default: HighZ				

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}		
					Sleep: HighZ		
					This pin can be configured	by software to be any of the	following
					• UART1_RTS - UART ir control is enabled.	nterface Request to Send, if l	JART Host Interface flow
					The UART interface is supp	oorted only in WiSeConnect [™]	м.
GPIO_15	A41	IO_VDD_1	Inout	HighZ	Default: HighZ		
					Sleep: HighZ		
					This pin can be configured	by software to be any of the	following
					• UART1_CTS - UART ir is enabled.	nterface Clear to Send, if UA	RT Host Interface flow control
					UART1_TRANSPAREN Indication that chip has	NT_MODE - UART Host inter entered into TRANSPEREN	face Transparent Mode, T_MODE
					 TSF_SYNC - Transmit Synchronization Function signal to indicate t when a packet is transmitted. The signal is toggled once at the end transmitted packet. 		
					The UART interface is supp	orted only in WiSeConnect [™]	М.
SDIO_CLK/SPI_	B40	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep
GER					SDIO	SDIO_CLK - SDIO interface clock	HighZ
					SPI	SPI_CLK - SPI Slave interface clock	HighZ
					Non-SDIO, SPI	HighZ	HighZ
					The SPI interface is suppor	ted only in WiSeConnect™.	
SDIO_CMD/SPI CSN	A1	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep
					SDIO	SDIO_CMD - SDIO interface CMD signal	HighZ

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}				
					SPI	SPI_CSN - Active-low Chip Select signal of SPI Slave interface	HighZ		
					Non-SDIO, SPI	HighZ	HighZ		
					The SPI interface is support	ed only in WiSeConnect™.			
SDIO_D0/SPI_	B39	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep		
MOSI					SDIO	SDIO_D0 - SDIO interface Data0 signal	HighZ		
					SPI	SPI_MOSI - SPI Slave interface Master-Out- Slave-In signal	HighZ		
					Non-SDIO, SPI	HighZ	HighZ		
					The SPI interface is supported only in WiSeConnect™.				
SDIO_D1/SPI_	A44	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep		
MICC					SDIO	SDIO_D1 - SDIO interface Data1 signal	HighZ		
					SPI	SPI_MISO - SPI Slave interface Master-In-Slave- Out signal	HighZ		
					Non-SDIO, SPI	HighZ	HighZ		
					The SPI interface is support	ted only in WiSeConnect™.			
SDIO_D2/SPI_I	A43	SDIO_IO_VDD	Inout	HighZ	Host	Default	Sleep		
NIR					SDIO	SDIO_D2 - SDIO interface Data2 signal	HighZ		

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}		
					SPI	SPI_INTR - SPI Slave interface Interrupt Signal to the Host	HighZ
					Non-SDIO, SPI	HighZ	HighZ
					The SPI interface is support	ted only in WiSeConnect™.	
SDIO_D3/SPI_E	A42	SDIO_IO_VDD	Inout	Pullup	Host	Default	Sleep
CDC_DIS					SDIO	SDIO_D3 - SDIO interface Data3 signal	HighZ
					SPI	SPI_ERR_INTR - SPI Bus Error Interrupt Signals	HighZ
					USB	USB_CDC_DIS - USB- CDC Active-High Disable Signal	HighZ
					Non-SDIO, SPI	HighZ	HighZ
					The SPI interface is supported only in WiSeConnect™.		
GPIO_46	A5	IO_VDD_1	Inout	HighZ			
					Part Number	Default	Sleep
					RS9116W-SB0N-XXX- ABC	QSPI_CLK - QSPI Clock	HighZ
					RS9116W-SB00-QMS- ABC	ANT_SEL - Antenna Select 1	HighZ
GPIO_47	A7	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep
					RS9116W-SB0N-XXX- ABC	QSPI_D0 - QSPI Data I/O 0	HighZ

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}		
					RS9116W-SB00-QMS- ABC	ANT_SEL_B - Antenna Select 2	HighZ
GPIO_48	B7	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep
					RS9116W-SB0N-XXX- ABC	QSPI_D1 - QSPI Data I/O 1	HighZ
					RS9116W-SB00-QMS- ABC	BT_ANT_SEL - Antenna Select for Bluetooth RF Chain	HighZ
GPIO_49	B6	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep
					RS9116W-SB0N-XXX- ABC	QSPI_CSN0 - QSPI CSN 0	HighZ
			RS9116W-SB00-QMS- ABC	HighZ	HighZ		
GPIO_50	A6	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep
					RS9116W-SB0N-XXX- ABC	QSPI_D2 - QSPI Data I/O 2	HighZ
					RS9116W-SB00-QMS- ABC	HighZ	HighZ
GPIO_51	B5	IO_VDD_1	Inout	HighZ	Part Number	Default	Sleep
					RS9116W-SB0N-XXX- ABC	QSPI_D3 - QSPI Data I/O 3	HighZ
					RS9116W-SB00-QMS- ABC	HighZ	HighZ
ULP_GPIO_0	A35	ULP_IO_VDD	Inout	HighZ	Default: HighZ		
					Sleep: HighZ		

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}				
					This pin can be configured by software to be any of the following for RS9116X-SB0X QMS-ABC				
					WLAN_ACTIVE*: Activ WLAN transmission is	ve-High signal to indicate to ar active. Part of the 3-wire coex	n external Bluetooth IC that kistence interface.		
					*This pin is intended to act as WLAN_ACTIVE for wireless coexistence. It is however not available in the current firmware. Please contact Silicon Labs to learn about availability in the future versions.				
ULP_GPIO_1	B22	ULP_IO_VDD	Inout	HighZ	Default: HighZ				
					Sleep: HighZ				
					This pin can be configured QMS-ABC	l by software to be any of the f	following for RS9116X-SB0X-		
					 BT_ACTIVE*: Active- transmitting. Part of th 	ligh signal from an external Bl e 3-wire coexistence interface	uetooth IC that it is		
					*This pin is intended to act available in the current firm availability in the future ve	t as BT_ACTIVE for Bluetooth nware. Please contact Silicon rsions.	coexistence. It is however not Labs to learn about		
ULP_GPIO_4	B21	ULP_IO_VDD	Inout	HighZ	Part Number	Default	Sleep		
					RS9116W-SB0N-QMS- ABC	ANT_SEL - Antenna Select 1	HighZ		
					RS9116W-SB00-QMS- ABC	HighZ	HighZ		
ULP_GPIO_5	A19	ULP_IO_VDD	Inout	HighZ	Part Number	Default	Sleep		
					RS9116W-SB0N-XXX- ABC	ANT_SEL_B - Antenna Select 2	HighZ		
					RS9116W-SB00-QMS- ABC	LP_WAKEUP_IN	HighZ		
					This pin can be configured QMS-ABC	l by software to be any of the f	ollowing for RS9116W-SB00-		

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}				
					LP_WAKEUP_IN: This	is LP Powersave Wakeup ir	dication to Device from HOST		
					 HOST_WAKEUP_INDI device that host is read host. This is supported The UART interface is 	CATION: This is used as an ly to take the packet and Dev only in UART host mode. supported only in WiSeConr	indication from Host to the ⁄ice can transfer the packet to ect™.		
ULP_GPIO_6	A22	ULP_IO_VDD	Inout	HighZ	Part Number	Default	Sleep		
					RS9116W-SB0X-QMS- ABC	HighZ	HighZ		
					This pin can be configured by software to be any of the following for RS9116W-SB00- QMS-ABC or RS9116W-SB0N-QMS-ABC				
					WAKEUP_FROM_Dev	* - Used as a wakeup indica	tion to host from device.		
					BT_PRIORITY**: Active that the Bluetooth trans	e-high signal from an externa smissions are a higher priorit	al Bluetooth IC that indicates y.		
					*For Wake-on-Wireless fea externally.	ture, this pin needs to have a	a weak pull-up resistor		
					**This pin is intended to act not available in the current availability in the future vers	t as BT_PRIORITY for Blueto firmware. Please contact Sil sions.	both coexistence. It is however con Labs to learn about		
ULP_GPIO_7	B18	ULP_IO_VDD	Inout	HighZ	Part Number	Default	Sleep		
					RS9116W-SB0N-QMS- ABC	BT_ANT_SEL - Antenna Select for Bluetooth RF Chain	HighZ		
					RS9116W-SB00-QMS- ABC	HighZ	HighZ		
ULP_GPIO_8	A36	ULP_IO_VDD	Inout	HighZ	Default: HighZ				
					Sleep: HighZ				
					This pin can be configured	by software to be any of the	following		

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					 LED0: Control signal to an external LED. * LED0 functionality currently not available in WiSeConnect[™] modules
UART2_TX	A24	ULP_IO_VDD	Inout	HighZ	Default: UART2_TX- Debug UART Interface serial output Sleep: HighZ UART2_TX: Debug UART interface serial output.
ULP_GPIO_10	A23	ULP_IO_VDD	Inout	HighZ	Default: HighZ Sleep: HighZ This pin can be configured by software to be any of the following • I2C_SCL: I2C interface clock.
ULP_GPIO_11	B17	ULP_IO_VDD	Inout	HighZ	 Default: HighZ Sleep: HighZ This pin can be configured by software to be any of the following I2C_SDA: I2C interface data.
UULP_VBAT_G PIO_0	B10	UULP_VBATT_ 1	Output	High	 Default : EXT_PG_EN Sleep: SLEEP_IND_FROM_DEV / EXT_PG_EN This pin can be configured by software to be any of the following SLEEP_IND_FROM_DEV: This signal is used to send an indication to the Host processor. An indication is sent when the chip enters (logic low) and exits (logic high) the ULP Sleep mode. EXT_PG_EN: Active-high enable signal to an external power gate which can be used to control the power supplies other than Always-ON VBATT Power Supplies in ULP Sleep mode.
HOST_BYP_UL P_WAKEUP	B24	UULP_VBATT_ 1	Input	HighZ	Default: HOST_BYP Sleep : ULP_WAKEUP This signal has two functionalities – one during the bootloading process and one after the bootloading. During bootloading, this signal is an active-high input to indicate that the bootloader should bypass any inputs from the Host processor and continue to load the default firmware from Flash. After bootloading, this signal is an active-high input to

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
					indicate that the chip should wake up from it's Ultra Low Power (ULP) sleep mode. The bootloader bypass functionality is supported only in WiSeConnect™.
UULP_VBAT_G PIO_3	A25	UULP_VBATT_ 1	Inout	HighZ	 Default : HighZ Sleep: XTAL_32KHZ_IN / SLEEP_IND_FROM_DEV This pin can be configured by software to be any of the following XTAL_32KHZ_IN: This pin can be used to feed external clock from a host processor or from external crystal oscillator. SLEEP_IND_FROM_DEV: This signal is used to send an indication to the Host processor. An indication is sent when the chip enters (logic low) and exits (logic high) the ULP Sleep mode.
JP0	A17	IO_VDD_2	Input	Pullup	Default: JP0 Sleep : HighZ JP0 - Reserved. Connect to a test point for debugging purposes.
JP1	B16	IO_VDD_2	Input	Pullup	Default: JP1 Sleep : HighZ JP1 - Reserved. Connect to a test point for debugging purposes.
JP2	A16	IO_VDD_2	Input	Pullup	Default: JP2 Sleep : HighZ JP2 - Reserved. Connect to a test point for debugging purposes.
JNC	B15	IO_VDD_2	NC	Pullup	Default: JNC Sleep : HighZ JNC - Reserved. Connect to a test point for debugging purposes.
USB_DP	B36	USB_AVDD_3P 3	Inout	NA	Positive data channel from the USB connector.
USB_DM	A40	USB_AVDD_3P 3	Inout	NA	Negative data channel from the USB connector.

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description ^{1,2,3,4}
USB_ID	A37	USB_AVDD_3P 3	Input	NA	ID signal from the USB connector.
USB_TXRTUNE	B37	USB_AVDD_3P 3	Input	NA	USB Transmitter resistor tune analog signal which needs to be connected to an external 200 Ω resistor to adjusts the USB's high-speed source impedance.
USB_VBUS	A38	USB_AVDD_3P 3	Input	NA	5V USB VBUS signal from the USB connector

Table 3 Chip Packages - Host and Peripheral Interfaces

1. "Default" state refers to the state of the device after initial boot loading and firmware loading is complete.

2. "Sleep" state refers to the state of the device after entering Sleep state which is indicated by Active-High "SLEEP_IND_FROM_DEV" signal.

3. Please refer to "RS9116 nLink Technical Reference Manual" for software programming information in hosted mode.

4. Please refer to "RS9116 Wireless SAPI Manual" for software programming information in embedded mode.

5. There are some functionalities, such as SLEEP_IND_FROM_DEV, that are available on multiple pins. However, these pins have other multiplexed functionalities. Any pin can be used based on the required functionality. Customer has to note the default states before using appropriate pin.

2.4 Miscellaneous Pins

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description
FLY_P1	B28	UULP_VBATT_ 1	Input	NA	Fly Capacitor for Switched cap DCDC.
FLY_N1	A32	UULP_VBATT_ 1	Input	NA	Fly Capacitor for Switched cap DCDC.
XTAL_IN	B12	RF_VBATT	Input	NA	Input to the on-chip oscillator from the external 40 MHz crystal.
XTAL_OUT	A13	RF_VBATT	Output	NA	The output of the on-chip oscillator to the external 40 MHz crystal.

Pin Name	QMS Pin Number	QMS I/O Supply Domain	Direction	Initial State (Power up, Active Reset)	Description
TRST	A15	IO_VDD_2	Input	HighZ	Test signal. Connect to Ground.
NC	A29,B9,B26,B27	NA	NA	NA	No connect.

Table 4 Chip Packages - Miscellaneous Pins

3 RS9116 QMS SoC Specifications

3.1 Absolute Maximum Ratings

Functional operation above maximum ratings is not guaranteed and may damage the device.

Symbol	Parameter	Min	Max	Units
T _{store}	Storage temperature	-40	+125	°C
T _{j(max)}	Maximum junction temperature	-	+125	°C
UULP_VBATT_1	Always-on VBATT supply to the UULP Domains	-0.5	3.63	V
UULP_VBATT_2	Always-on VBATT supply to the UULP Domains	-0.5	3.63	V
RF_VBATT	Always-on VBATT Power supply to the RF	-0.5	3.63	V
VINBCKDC	Power supply for the on-chip Buck	-0.5	3.63	V
VINLDOSOC	Power supply for SoC LDO	-0.5	1.8	V
VINLDO1P8	Power supply for 1.8V LDO	-0.5	3.63	V
FLASH_IO_VDD	I/O supply for Flash	-0.5	3.63	V
IO_VDD_1	I/O supplies for GPIOs	-0.5	3.63	V
IO_VDD_2	I/O supplies for GPIOs	-0.5	3.63	V
SDIO_IO_VDD	I/O supplies for SDIO I/Os.	-0.5	3.63	V
ULP_IO_VDD	I/O supplies for ULP GPIOs	-0.5	3.63	V
PA2G_AVDD	Power supply for the 2.4 GHz RF Power Amplifier	-0.5	3.63	V
RF_AVDD	Power supply for the 2.4 GHz RF and AFE	-0.5	1.98	V
PLL_AVDD	Power supply for the on-chip PLLs	-0.5	1.98	V
UULP_AVDD	Power supply for the always-on digital and ULP peripherals	-0.5	1.21	V
C_VDD	Power supply for the digital core	-0.5	1.26	V
USB_AVDD_3P3	Power supply for the USB interface	-0.5	3.63	V
USB_AVDD_1P1	Power supply for the USB core	-0.5	1.26	V
ESD _{HBM}	Electrostatic discharge tolerance (HBM) - all I/Os except RF pins		2000	V
	Electrostatic discharge tolerance (HBM) - RF pins except RF_BTTX	-	1500 750	V
	Electrostatic discharge tolerance (HBM) - RF_BTTX			
	Compliant with JEDEC specification JS-001- 2017			
ESD _{CDM}	Electrostatic discharge tolerance (CDM) Compliant with JEDEC specification JS-002- 2014	-	500	V

Symbol	Parameter	Min	Мах	Units
LU	Latchup Immunity ICE criteria at ambient temp of 25°C Compliant with JESD78D	-50	100	mA
I _{max}	Maximum Current consumption in TX mode	-	400	mA
P _{max}	RF Power Level Input to the chip on pins RF pins	-	10	dBm
IPmax	Peak current rating for power supply	-	500	mA

Table 5 Absolute Maximum Ratings

3.2 Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Units
Tambient	Ambient temperature	-40	25	85	°C
UULP_VBATT_1	Always-on VBATT supply to the UULP Domains	1.65	1.85/3.3	3.63	V
UULP_VBATT_2	Always-on VBATT supply to the UULP Domains	1.65	1.85/3.3	3.63	V
RF_VBATT	Always-on VBATT Power supply to the RF	1.75	1.85/3.3	3.63	V
VINBCKDC	Power supply for the on-chip Buck	1.75	1.85/3.3	3.63	V
VINLDOSOC	Power supply for SoC LDO	1.1	1.35	1.55	V
VINLDO1P8	Power supply for 1.8V LDO	1.75	1.85/3.3	3.63	V
FLASH_IO_VDD	I/O supply for Flash	1.65	1.85	1.98	V
IO_VDD_1	I/O supply for GPIOs	1.65	1.85/3.3	3.63	V
IO_VDD_2	I/O supply for GPIOs	1.65	1.85/3.3	3.63	V
SDIO_IO_VDD	I/O Supply for SDIO I/Os	1.65	1.85/3.3	3.63	V
ULP_IO_VDD	I/O Supply for ULP GPIOs.	1.65	1.85/3.3	3.63	V
PA2G_AVDD	Power supply for the 2.4 GHz RF Power Amplifier	1.75	1.85/3.3	3.63	V
RF_AVDD	Power supply for the 2.4 GHz RF and AFE	1.3	1.4	1.8	V
PLL_AVDD	Power supply for the on-chip PLLs	1.3	1.4	1.8	V
UULP_AVDD	Power supply for the always-on digital and ULP peripherals	0.95	1.0	1.21	V
C_VDD	Power supply for the digital core (Low Power	0.95	1.0	1.05	V
	Power supply for the digital core (High Performance Mode)	0.99	1.1	1.21	V
USB_AVDD_3P3	Power supply for the USB interface	3.0	3.3	3.63	V
USB_AVDD_1P1	Power supply for the USB core	0.99	1.1	1.21	V

Table 6 Recommended Operating Conditions

3.3 DC Characteristics

3.3.1 Reset Pin

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vih	High level input voltage @3.3V	0.8 * VDD	-	3.63	V
	High level input voltage @1.8V	1.17	-	2.1	V
VIL	Low level input voltage @3.3V	-0.5	-	0.3 * VDD	V
	Low level input voltage @1.8V	-0.3	-	0.63	V
Vhys	Hysteresis voltage	0.05 * VDD	-	-	V

Table 7 Reset Pin

3.3.2 Power Sequence

The POC_IN and RESET_N signals should be controlled from external sources such as R/C circuits, and/or other MCU's GPIOs. However POC_OUT can be connected to POC_IN, if the supply voltage is 3.3V. Below waveforms show power sequence (Up & Down) requirements under various application needs. Note that below waveforms are not to scale.

3.3.2.1 Power-Up and Down Sequence with External 1.4V supply and POC_IN

Below diagram shows connections of various power supply voltages, POC_IN and RESET_N. These connections can be used when:

- System PMU (outside RS9116) can provide 1.4V supply, and hence the internal Buck regulator in RS9116 can be disabled.
- The 1.1V supply is still derived from LDO SoC (internal to RS9116).
- POC_IN is controlled externally.

NOTE:

- 1. Above shown is a typical connection diagram. Some of the supply pins shown above may or may not be present in the IC/Module. Check the Pinout table in this datasheet and connect accordingly.
- 2. * = Provide the supply voltages as per the specifications mentioned in this datasheet.
- 3. ** = USB power supply input connection is required if USB interface is present and used. Else, follow the connection as shown in Reference Schematics.

NOTE:

- 1. 3.3V/1.85V/VBATT supply shown above must be connected to the power supply pins of IC/Module. For example, SDIO_IO_VDD, ULP_IO_VDD, UULP_VBATT_1, etc.
- 2. Above POC_IN waveform is applicable if it is externally driven. Else, that particular waveform can be ignored, and the RESET_N timing can be considered after/before external power supplies ramp-up/down.

3.3.2.2 Power-Up and Down Sequence with External POC_IN

Below diagram shows connections of various power supply voltages, POC_IN and RESET_N. These connections can be used when:

- System PMU cannot provide 1.4V or 1.1V supplies and the internal buck and LDO of RS9116 are used.
- POC_IN is controlled externally.

NOTE:

1. Above shown is a typical connection diagram. Check the Reference Schematics for connections of other power supplies.

NOTE:

1. 3.3V/1.85V/VBATT supply shown above must be connected to the power supply pins of IC/Module. For example, SDIO_IO_VDD, ULP_IO_VDD, UULP_VBATT_1, etc.

3.3.2.3 Power-Up and Down Sequence with POC_IN connected internally

Below diagram shows connections of various power supply voltages, POC_IN and RESET_N. The typical applications of this connection can be as followws.

- System cannot provide external 1.4V & 1.1V supplies and the internal buck and LDO of RS9116 are used.
- POC_IN is looped back from POC_OUT.

NOTE:

- 1. Above shown is a typical connection diagram. Check the Reference Schematics for connections of other power supplies.
- 2. POC_OUT can be connected to POC_IN if the supply voltage is 3.3V only. Else, POC_IN has to be driven externally.

<u>NOTE</u>:

1. 3.3V/VBATT supply shown above must be connected to the power supply pins of IC/Module. For example, SDIO_IO_VDD, ULP_IO_VDD, UULP_VBATT_1, etc.

3.3.3 Digital Input Output Signals

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vih	High level input voltage @3.3V	2.0	-	3.63	V
	High level input voltage @1.8V	1.17	-	2.1	V
VIL	Low level input voltage @3.3V	-0.3	-	0.8	V
	Low level input voltage @1.8V	-0.3	-	0.63	V
V _{hys}	Hysteresis voltage	0.1 VDD	-	-	V
Vol	Low level output voltage	-	-	0.4	V
V _{OH}	High level output voltage	VDD-0.4	-	-	V
I _{OL}	Low level output current (programmable)	2.0	4.0	12.0	mA
Іон	High level output current (programmable)	2.0	4.0	12.0	mA

Table 8 Digital I/O Signals

3.3.4 USB

Parameter	Conditions	Min.	Тур.	Max.	Units	
Vcm DC (DC level measured at receiver connector)	HS Mode LS/FS Mode	-0.05 0.8	-	0.5 2.5	V	
Crossover Voltages	LS Mode FS Mode	1.3 1.3	-	2 2	V	
Power supply ripple noise (Analog 3.3V)	< 160 MHz	-50	-	50	mV	

Table 9 USB

3.3.5 Pin Capacitances

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Cio	Input/output capacitance, digital pins only	-	-	2.0	pF	

Table 10 Pin Capacitances

3.4 AC Characteristics

3.4.1 Clock Specifications

RS9116 chipsets require two primary clocks:

- Low frequency 32 KHz clock for sleep manager and RTC
 - o Internal 32 KHz RC clock is used for applications with low timing accuracy requirements
 - \circ 32 KHz crystal clock is used for applications with low timing accuracy requirements
- High frequency 40 MHz clock for the threadArch® processor, baseband subsystem and the radio

The chipsets have integrated internal oscillators including crystal oscillators to generate the required clocks. Integrated crystal oscillators enable the use of low-cost passive crystal components. Additionally, in a system where an external clock source is already present, the clock can be reused. The following are the recommended options for the clocks for different functionalities:

Functionality	Default Clock option	Other Clock option	Comments
Wi-Fi or Wi-Fi + BLE Connectivity	Internal 32KHz RC oscillator calibrated to <200ppm	32KHz XTAL oscillator input on UULPGPIO.	32KHz XTAL Oscillator clock is optional. No significant power consumption impact on connected power numbers (<10uA).
Wi-Fi + BT or Wi-Fi + BT + BLE Connectivity with low power Audio Streaming operation (A2DP Source)	32KHz XTAL oscillator input on UULPGPIO	Internal 32KHz RC oscillator calibrated to <200ppm	32KHz XTAL Oscillator clock is important for Low-power Audio Streaming operation (A2DP Source).

There is no impact on sleep/deep-sleep power consumption with/without 32KHz XTAL oscillator clock

32KHz XTAL sources:

Option 1: From Host MCU/MPU LVCMOS rail to rail clock input on UULPGPIO

Option 2: External Xtal oscillator providing LVCMOS rail to rail clock input on UULPGPIO (Nano-drive clock should not be supplied).

3.4.1.1 32 KHz Clock

The 32 KHz clock selection can be done through software. RC oscillator clock is not suited for high timing accuracy applications and can increase system current consumption in duty-cycled power modes.

3.4.1.1.1 RC Oscillator

Parameter	Parameter Description	Min	Тур	Мах	Units
F _{osc}	Oscillator Frequency		32.0		KHz
Fosc_Acc	Frequency Variation with Temp and Voltage		1.2		%
Jitter	RMS value of Edge jitter (TIE)		91		ns
Peak Period Jitter	Peak value of Cycle Jitter with 6σ variation		789		ns

Table 11 32 KHz RC oscillator

3.4.1.1.2 32 KHz External Oscillator

An external 32 KHz low-frequency clock can be fed through the XTAL_32KHZ_IN functionality.

Figure 4 External 32 KHz oscillator - Rail to Rail

Parameter	Parameter Description	Min	Тур	Мах	Units
Fosc	Oscillator Frequency		32.768		KHz
Fosc_Acc	Frequency Variation with Temp and Voltage	-100		100	ppm
Duty cycle	Input duty cycle	30	50	70	%
V _{AC}	Input AC peak-peak voltage swing at input pin.	0.3	-	VBATT- 0.3	Vpp

Table 12 32 KHz external oscillator specifications

3.4.1.2 40 MHz Clock

The 40 MHz internal oscillator mode can be used by connecting a 40 MHz crystal between the pins XTA L_P and XTAL_N. Load capacitance is integrated inside the chipset and calibrated and the calibrated value can be stored in eFuse using calibration software.

Parameter	Parameter Description	Min	Тур	Max	Units
F _{osc}	Oscillator Frequency		40		MHz
Fosc_Acc	Frequency Variation with Temp and Voltage	-20		20	ppm
ESR	Equivalent series resistance			60	Ω
Load cap	Load capacitance range	5		10	pF

Table 13 40 MHz crystal specifications

3.4.2 SDIO 2.0 Slave

3.4.2.1 Full Speed Mode

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
T _{sdio}	SDIO_CLK	-	-	25	MHz
Ts	SDIO_DATA, input setup time	4	-	-	ns
T _h	SDIO_DATA, input hold time	1	-	-	ns
T _{od}	SDIO_DATA, clock to output delay	-	-	13	ns

Figure 5 Interface Timing Diagram for SDIO 2.0 Slave Full Speed Mode

3.4.2.2 High Speed	Mode				
Parameter	Parameter Description	Min.	Тур.	Max.	Unit
T _{sdio}	SDIO_CLK	25	-	50	MHz
Ts	SDIO_DATA, input setup time	4	-	-	ns
T _h	SDIO_DATA, input hold time	1	-	-	ns
T _{od}	SDIO_DATA, clock to output delay	2.5	-	13	ns
CL	Output Load	5	-	10	pF
	Table 15 AC Characteristics - SDIO 2.0 Sla	ive High Sp	eed Mode		
SDIO_CLK					
SDIO_DATA_IN					
SDIO_DATA_OUT					

Figure 6 Interface Timing Diagram for SDIO 2.0 Slave High Speed Mode

3.4.3 SPI Slave

3.4.3.1	Low	Speed	Mode
0.1.0.1		opood	111000

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
T _{spi}	SPI_CLK	0	-	25	MHz
T _{cs}	SPI_CS to output delay	-	-	7.5	ns
T _{cst}	SPI CS to input setup time	4.5	-	-	-
Ts	SPI_MOSI, input setup time	1.33	-	-	ns
Th	SPI_MOSI, input hold time	1.2	-	-	ns
T _{od}	SPI_MISO, clock to output delay	-	-	8.75	ns
CL	Output Load	5	-	10	pF

Figure 7 Interface Timing Diagram for SPI Slave Low Speed Mode

3.4.3.2 High Speed	Node				
Parameter	Parameter Description	Min.	Тур.	Max.	Unit
Tspi	SPI_CLK	25	-	80	MHz
T _{cs}	SPI_CS to output delay	-	-	7.5	ns
T _{cst}	SPI CS to input setup time	4.5	-	-	-
Ts	SPI_MOSI, input setup time	1.33	-	-	ns
T _h	SPI_MOSI, input hold time	1.2	-	-	ns
T _{od}	SPI_MISO, clock to output delay	2.5	-	8.75	ns
CL	Output Load	5	-	10	pF
Table 17 AC Characteristics - SPI Slave High Speed Mode					
SPI_CLK					

Figure 8 Interface Timing Diagram for SPI Slave High Speed Mode

Daramotor	Parameter Description	Min	Тур	Max	Unit
i arameter	ranameter Description		тур.	Max.	onn
T _{spi}	SPI_CLK	-	-	100	MHz
Ts	SPI_MOSI, input setup time	1.33	-	-	ns

Parameter	Parameter Description	Min.	Тур.	Max.	Unit	
T _h	SPI_MOSI, input hold time	1.2	-	-	ns	
T _{od}	SPI_MISO, clock to output delay	1.5	-	8.75	ns	
CL	Output Load	5	-	10	pF	
Table 18 AC Characteristics - SPI Slave Ultra High Speed Mode						

Figure 9 Interface Timing Diagram for SPI Slave Ultra High Speed Mode

3.4.4 USB

3.4.4.1 Low Speed Mode

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
Tr	Rise Time	75	-	300	ns
Tf	Fall Time	75	-	300	ns
Jitter	Jitter	-	-	10	ns

Table 19 AC Characteristics - USB Low Speed Mode

3.4.4.2 Full Speed Mode

Parameter	Parameter	Min.	Тур.	Max.	Unit
Tr	Rise Time	4	-	20	ns
Tf	Fall Time	4	-	20	ns
Jitter	Jitter	-	-	1	ns

Table 20 AC Characteristics - USB Full Speed Mode

3.4.4.3 High Speed Mode

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
Tr	Rise Time	0.5	-	-	ns
T _f	Fall Time	0.5	-	-	ns
Jitter	Jitter	-	-	0.1	ns

Table 21 AC Characteristics - USB High Speed Mode

3.4.5 UART

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
T _{uart}	CLK	0	-	20	MHz

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
T _{od}	Output delay	0	-	10	ns
Ts	Input setup time	0	-	5	ns
CL	Output load	5	-	25	pF

Table 22 AC Characteristics - UART

3.4.6 I2C Master and Slave

3.4.6.1 Fast Speed Mode							
Parameter	Parameter Description	Min.	Тур.	Max.	Unit		
T _{i2c}	SCL	100	-	400	KHz		
T _{low}	clock low period	1.3	-	-	us		
T _{high}	clock high period	0.6	-	-	us		
T _{sstart}	start condition, setup time	0.6	-	-	us		
T _{hstart}	start condition, hold time	0.6	-	-	us		
Ts	data, setup time	100	-	-	ns		
T _{sstop}	stop condition, setup time	0.6	-	-	us		
CL	Output Load	5	-	10	pF		

Table 23 AC Characteristics - I2C Fast Speed Mode

Figure 10 Interface Timing Diagram for I2C Fast Speed Mode

3.4.6.2 High Speed Mode

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
T _{i2c}	SCL	0.4	-	3.4	MHz
Tlow	clock low period	160	-	-	ns
Thigh	clock high period	60	-	-	ns
T _{sstart}	start condition, setup time	160	-	-	ns
T _{hstart}	start condition, hold time	160	-	-	ns
Ts	data, setup time	10	-	-	ns
Th	data, hold time	0	-	70	ns
T _{sstop}	stop condition, setup time	160	-	-	ns

Table 24 AC Characteristics - I2C High Speed Mode

Figure 11 Interface Timing Diagram for I2C High Speed Mode

3.4.7 I2S/PCM Master and Slave

3.4.7.1 Master Mode

Negedge driving and posedge sampling for I2S Posedge driving and negedge sampling for PCM

Parameter	Parameter Description	Min.	Тур.	Max.	Unit
T _{i2s}	i2s_clk	0	-	25	MHz
Ts	i2s_din,i2s_ws setup time	10	-	-	ns
Th	i2s_din,i2s_ws hold time	0	-	-	ns
T _{od}	i2s_dout output delay	0	-	12	ns
CL	i2s_dout output load	5	-	10	pF

Table 25 AC Characteristics – I2S/PCM Master Mode

Figure 12 Interface Timing Diagram for I2S Master Mode

3.4.7.2 Slave Mode Negedge driving and posedge sampling for I2S Posedge driving and negedge sampling for PCM

Figure 13 Interface Timing Diagram for I2S Slave Mode

3.4.8 GPIO pins

Parameter	Parameter Description	Conditions	Min.	Тур.	Max.	Unit
T _{rf}	Rise time	Pin configured as output; SLEW = 1(fast mode)	1.0	-	2.5	ns
T _{ff}	Fall time	Pin configured as output; SLEW = 1(fast mode)	0.9	-	2.5	ns
T _{rs}	Rise time	Pin configured as output; SLEW = 0(standard mode)	1.9	-	4.3	ns
T _{fs}	Fall time	Pin configured as output; SLEW = 0(standard mode)	1.9	-	4.0	ns
Tr	Rise time	Pin configured as input	0.3	-	1.3	ns
Tf	Fall time	Pin configured as input	0.2	-	1.2	ns
	1	Table 27 AC Characteristics - C	SPIO Pins			

3.5 RF Characteristics

In the sub-sections below,

• All Sensitivity and Transmit Power numbers are at chip pin for the QMS package. The value at the antenna port will be lower depending on the front-end loss.

- All WLAN Sensitivity numbers and Adjacent channel numbers are at < 10% PER limit. Packet sizes are 1024 bytes for 802.11 b/g data rates and 4096 bytes for 802.11n data rates.
- For WLAN ACI cases, the desired signal power is 3dB above standard defined sensitivity level.
- For Bluetooth C/I cases, the desired signal power is 3dB above standard defined sensitivity level.
- For Support of 1.85 V on RF/PA, please contact Silicon Labs.

Unless otherwise stated, the specifications in this section apply when the operating conditions are within the limits specified in the <u>Recommended Operating Conditions</u>

3.5.1 WLAN 2.4 GHz Transmitter Characteristics

3.5.1.1 Transmitter characteristics with 3.3V Supply

TA = 25°C, PA2G_AVDD/VINBCKDC = 3.3 V. Remaining supplies are at typical operating conditions. Parameters are measured at chip port on channel 6 $(2437 \text{ MHz})^{(1)}$

Parameter	Condition	Notes	Min	Тур	Max	Units
Transmit Power for 20MHz Bandwidth, compliant with IEEE mask and EVM	DSSS - 1 Mbps	EVM< -9 dB	-	20	-	dBm
	DSSS - 2 Mbps	EVM< -9 dB	-	20	-	dBm
	CCK- 5.5 Mbps	EVM< -9 dB	-	20	-	dBm
	CCK - 11 Mbps	EVM< -9 dB	-	20	-	dBm
	OFDM - 6 Mbps	EVM< -5 dB	-	20	-	dBm
	OFDM - 9 Mbps	EVM< -8 dB	-	20	-	dBm
	OFDM - 12 Mbps	EVM< -10 dB	-	20	-	dBm
	OFDM - 18 Mbps	EVM< -13 dB	-	20	-	dBm
	OFDM - 24 Mbps	EVM< -16 dB	-	19	-	dBm
	OFDM - 36 Mbps	EVM< -19 dB	-	17	-	dBm
	OFDM - 48 Mbps	EVM< -22 dB	-	16	-	dBm
	OFDM - 54 Mbps	EVM< -25 dB	-	16	-	dBm
	MCS0 Mixed Mode	EVM< -5 dB	-	20	-	dBm
	MCS1 Mixed Mode	EVM< -10 dB	-	20	-	dBm

Parameter	Condition	Notes	Min	Тур	Max	Units
	MCS2 Mixed Mode	EVM< -13 dB	-	20	-	dBm
	MCS3 Mixed Mode	EVM< -16 dB	-	19	-	dBm
	MCS4 Mixed Mode	EVM< -19 dB	-	17	-	dBm
	MCS5 Mixed Mode	EVM< -22 dB	-	16	-	dBm
	MCS6 Mixed Mode	EVM< -25 dB	-	16	-	dBm
	MCS7 Mixed Mode	EVM< -27 dB	-	14	-	dBm
Transmitter Emissions (6 Mbps @	776-794 MHz	CDMA2000	-	-141	-	dBm/Hz
Maximum Fower)	869–960 MHz	CDMAOne, GSM850	-	-159	-	dBm/Hz
	1450–1495 MHz	DAB	-	-151	-	dBm/Hz
	1570–1580 MHz	GPS	-	-148	-	dBm/Hz
	15921610 MHz	GLONASS	-	-130	-	dBm/Hz
	1710–1800 MHz	DSC-1800- Uplink	-	-128	-	dBm/Hz
	1805–1880 MHz	GSM 1800	-	-110	-	dBm/Hz
	1850–1910 MHz	GSM 1900	-	-121	-	dBm/Hz
	1910–1930 MHz	TDSCDMA,LTE	-	-132	-	dBm/Hz
	1930–1990 MHz	GSM1900, CDMAOne,WCD MA	-	-130	-	dBm/Hz
	2010–2075 MHz	TDSCDMA	-	-130	-	dBm/Hz
	2110–2170 MHz	WCDMA	-	-128	-	dBm/Hz
	2305–2370 MHz	LTE Band 40	-	-106	-	dBm/Hz
	2370–2400 MHz	LTE Band 40	-	-95	-	dBm/Hz
	2496–2530 MHz	LTE Band 41	-	-115	-	dBm/Hz
	2530–2560 MHz	LTE Band 41	-	-124	-	dBm/Hz
	2570–2690 MHz	LTE Band 41	-	-126	-	dBm/Hz
	5000–5900 MHz	WLAN 5G	-	-145	-	dBm/Hz
Harmonic Emissions (1 Mbps @ Maximum Power)	2nd Harmonic	-	-	-19.6	-	dBm/MHz
Maximum Power)	3rd Harmonic	-	-	-10.5	-	dBm/MHz

Table 28 Transmitter characteristics with 3.3 V Supply

1. Up to 2dB variation in power from channel-to-channel. To meet FCC emission limits, edge channels (1 and 11) have reduced TX power.

3.5.1.2 Transmitter characteristics with 1.85 V Supply

TA = 25°C, PA2G_AVDD/VINBCKDC = 1.85 V. Remaining supplies are at typical operating conditions.Parameters are measured at chip port on channel 6 $(2437 \text{ MHz})^{(1)}$

Parameter	Condition	Notes	Min	Тур	Мах	Units
Transmit Power for 20MHz Bandwidth, compliant with IEEE mask and EVM	DSSS - 1 Mbps	EVM< -9 dB	-	15	-	dBm
	DSSS - 2 Mbps	EVM< -9 dB	-	15	-	dBm
	CCK- 5.5 Mbps	EVM< -9 dB	-	15	-	dBm
	CCK - 11 Mbps	EVM< -9 dB	-	15	-	dBm
	OFDM - 6 Mbps	EVM< -5 dB	-	15	-	dBm
	OFDM - 9 Mbps	EVM< -8 dB	-	15	-	dBm
	OFDM - 12 Mbps	EVM< -10 dB	-	15	-	dBm
	OFDM - 18 Mbps	EVM< -13 dB	-	14.5	-	dBm
	OFDM - 24 Mbps	EVM< -16 dB	-	13.5	-	dBm
	OFDM - 36 Mbps	EVM< -19 dB	-	12	-	dBm
	OFDM - 48 Mbps	EVM< -22 dB	-	11	-	dBm
	OFDM - 54 Mbps	EVM< -25 dB	-	10.5	-	dBm
	MCS0 Mixed Mode	EVM< -5 dB	-	13.5	-	dBm
	MCS1 Mixed Mode	EVM< -10 dB	-	13.5	-	dBm
	MCS2 Mixed Mode	EVM< -13 dB	-	13.5	-	dBm
	MCS3 Mixed Mode	EVM< -16 dB	-	13	-	dBm
	MCS4 Mixed Mode	EVM< -19 dB	-	11.5	-	dBm
	MCS5 Mixed Mode	EVM< -22 dB	-	11	-	dBm
	MCS6 Mixed Mode	EVM< -25 dB	-	11	-	dBm
	MCS7 Mixed Mode	EVM< -27 dB	-	7	-	dBm

Parameter	Condition	Notes	Min	Тур	Мах	Units
Transmitter Emissions (1 Mbps @	776-794 MHz	CDMA2000	-	-146	-	dBm/Hz
Maximum Power)	869–960 MHz	CDMAOne, GSM850	-	-160	-	dBm/Hz
	1450–1495 MHz	DAB	-	-152	-	dBm/Hz
	1570–1580 MHz	GPS	-	-150	-	dBm/Hz
	1592–1610 MHz	GLONASS	-	-132	-	dBm/Hz
	1710–1800 MHz	DSC-1800- Uplink	-	-130	-	dBm/Hz
	1805–1880 MHz	GSM 1800	-	-110	-	dBm/Hz
	1850–1910 MHz	GSM 1900	-	-125	-	dBm/Hz
	1910–1930 MHz	TDSCDMA,LTE	-	-132	-	dBm/Hz
	1930–1990 MHz	GSM1900, CDMAOne,WCD MA	-	-129	-	dBm/Hz
	2010–2075 MHz	TDSCDMA	-	-136	-	dBm/Hz
	2110–2170 MHz	WCDMA	-	-136	-	dBm/Hz
	2305–2370 MHz	LTE Band 40	-	-113	-	dBm/Hz
	2370–2400 MHz	LTE Band 40	-	-94	-	dBm/Hz
	2496–2530 MHz	LTE Band 41	-	-120	-	dBm/Hz
	2530–2560 MHz	LTE Band 41	-	-124	-	dBm/Hz
Harmonic Emissions (1 Mbps @	2570–2690 MHz	LTE Band 41	-	-128	-	dBm/Hz
	5000–5900 MHz	WLAN 5G	-	-145	-	dBm/Hz
	4.8-5.0 GHz	2nd Harmonic	-	-21.5	-	dBm/MHz
	7.2-7.5 GHz	3rd Harmonic	-	-15.5	-	dBm/MHz
	·	·				

Table 29 Transmitter characteristics with 1.85 V Supply

1. Up to 2dB variation in power from channel-to-channel. To meet FCC emission limits, edge channels (1 and 11) have reduced TX power.

3.5.2 WLAN 2.4 GHz Receiver Characteristics on High-Performance (HP) RF Chain

TA = 25°C. Parameters are measured at chip port on channel 1(2412 MHz)

Parameter	Condition/Notes	Min	Тур	Max	Units
Sensitivity for 20MHz Bandwidth ⁽¹⁾	1 Mbps DSSS	-	-98.5	-	dBm
	2 Mbps DSSS	-	-93	-	dBm
	5.5 Mbps CCK	-	-90	-	dBm

Parameter	Condition/Notes	Min	Тур	Max	Units
	11 Mbps CCK	-	-88	-	dBm
	6 Mbps OFDM	-	-93	-	dBm
	9 Mbps OFDM	-	-92	-	dBm
	12 Mbps OFDM	-	-91	-	dBm
	18 Mbps OFDM	-	-89	-	dBm
	24 Mbps OFDM	-	-85.5	-	dBm
	36 Mbps OFDM	-	-82.5	-	dBm
	48 Mbps OFDM	-	-78	-	dBm
	54 Mbps OFDM	-	-76.5	-	dBm
	MCS0 Mixed Mode	-	-91.5	-	dBm
	MCS1 Mixed Mode	-	-89.5	-	dBm
	MCS2 Mixed Mode	-	-87	-	dBm
	MCS3 Mixed Mode	-	-84.5	-	dBm
	MCS4 Mixed Mode	-	-80.5	-	dBm
	MCS5 Mixed Mode	-	-76.5	-	dBm
	MCS6 Mixed Mode	-	-74.5	-	dBm
	MCS7 Mixed Mode	-	-73	-	dBm
Maximum Input Level for PER	802.11 b	-	0	-	dBm
DEIOW 10%	802.11g	-	-10	-	dBm
	802.11n	-	-10	-	dBm
RSSI Accuracy Range		-3	-	3	dB
Blocking level for 3 dB RX	776–794 MHz	-	-14	-	dBm
6Mbps OFDM, Desired signal at -	824–849 MHz	-	-14	-	dBm
79dBm)	880–915 MHz	-	-16	-	dBm
	1710–1785 MHz	-	-13	-	dBm
	1850–1910 MHz	-	-18	-	dBm
	1920–1980 MHz	-	-20	-	dBm
	2300–2400 MHz	-	-58	-	dBm
	2570–2620 MHz	-	-24	-	dBm
	2545–2575 MHz	-	-24	-	dBm
Return Loss		-10	-	-	dB
Adjacent Channel Interference	1 Mbps DSSS	-	36	-	dB
	11 Mbps DSSS	-	37	-	dB
	6 Mbps OFDM	-	38	-	dB
	54 Mbps OFDM	-	22	-	dB

Parameter	Condition/Notes	Min	Тур	Мах	Units
	MCS0 Mixed Mode	-	38	-	dB
	MCS7 Mixed Mode	-	20	-	dB
Alternate Adjacent Channel Interference	1 Mbps DSSS	-	44	-	dB
	11 Mbps DSSS	-	35	-	dB
	6 Mbps OFDM	-	46	-	dB
	54 Mbps OFDM	-	30	-	dB
	MCS0 Mixed Mode	-	46	-	dB
	MCS7 Mixed Mode	-	28	-	dB

Table 30 WLAN 2.4 GHz Receiver Characteristics on HP RF Chain

1. Sensitivities for channels 6,7,8 & 11 are up to 2dB worse.

3.5.3 WLAN 2.4 GHz Receiver Characteristics on Low-Power (LP) RF Chain

TA = 25°C. Parameters are measured at chip port on channel 1(2412 MHz)

Parameter	Condition/Notes	Min	Тур	Max	Units
Sensitivity for 20MHz Bandwidth ⁽¹⁾	1 Mbps DSSS	-	-96.5	-	dBm
	2 Mbps DSSS	-	-89.5	-	dBm
	5.5 Mbps CCK	-	-88	-	dBm
	11 Mbps CCK	-	-84.5	-	dBm
	6 Mbps OFDM	-	-89.5	-	dBm
	9 Mbps OFDM	-	-89.5	-	dBm
	12 Mbps OFDM	-	-89.5	-	dBm
	18 Mbps OFDM	-	-86.5	-	dBm
	24 Mbps OFDM	-	-83.5	-	dBm
	36 Mbps OFDM	-	-79	-	dBm
	MCS0 Mixed Mode	-	-88.5	-	dBm
	MCS1 Mixed Mode	-	-87.5	-	dBm
	MCS2 Mixed Mode	-	-85.5	-	dBm
	MCS3 Mixed Mode	-	-82.5	-	dBm
	MCS4 Mixed Mode	-	-78.5	-	dBm
Maximum Input Level for PER below 10%	802.11 b	-	-10	-	dBm
	802.11g	-	-10	-	dBm
	802.11n	-	-10	-	dBm

Parameter	Condition/Notes	Min	Тур	Мах	Units
RSSI Accuracy Range		-3	-	3	dB
Blocking level for 3 dB RX	776–794 MHz	-	-14	-	dBm
6Mbps OFDM, Desired signal at -	824–849 MHz	-	-19	-	dBm
79dBm)	880–915 MHz	-	-16	-	dBm
	1710–1785 MHz	-	-14	-	dBm
	1850–1910 MHz	-	-14	-	dBm
	1920–1980 MHz	-	-23	-	dBm
	2300–2400 MHz	-	-26	-	dBm
	2570–2620 MHz	-	-23	-	dBm
	2545–2575 MHz	-	-22	-	dBm
Return Loss		-10	-	-	dB
Adjacent Channel Interference	1 Mbps DSSS	-	40	-	dB
	11 Mbps DSSS	-	36	-	dB
	6 Mbps OFDM	-	42	-	dB
	36 Mbps OFDM	-	30	-	dB
	MCS0 Mixed Mode	-	40	-	dB
	MCS4 Mixed Mode	-	30	-	dB
Alternate Adjacent Channel	1 Mbps DSSS	-	50	-	dB
Interference	11 Mbps DSSS	-	38	-	dB
	6 Mbps OFDM	-	48	-	dB
	36 Mbps OFDM	-	38	-	dB
	MCS0 Mixed Mode	-	48	-	dB
	MCS4 Mixed Mode	-	36	-	dB
Table 31 V	VLAN 2.4 GHz Receiver Character	istics on LI	P RF Chain		

1. Sensitivities for channels 6,7,8 & 11 are up to 2dB worse.

3.5.4 Bluetooth Transmitter Characteristics on High-Performance (HP) RF Chain

3.5.4.1 Transmitter characteristics with 3.3 V Supply

TA = 25°C, PA2G_AVDD/VINBCKDC = 3.3 V. Remaining supplies are at typical operating conditions. Parameters are measured at chip port.⁽¹⁾

Parameter	Condition	Notes	Min	Тур	Max	Units
Transmit Power	BR		-	14	-	dBm

Parameter	Condition	Notes	Min	Тур	Max	Units
	EDR 2Mbps		-	14	-	dBm
	EDR 3Mbps		-	14	-	dBm
	LE 1Mbps		-	20	-	dBm
	LE 2Mbps		-	20	-	dBm
	LR 500 Kbps		-	20	-	dBm
	LR 125 Kbps		-	20	-	dBm
Power Control Step	BR, EDR		-	3	-	dB
Adjacent Channel Power M-N = 2	BR		-	-	-20	dBm
	EDR		-	-	-20	dBm
	LE		-	-	-20	dBm
	LR		-	-	-20	dBm
Adjacent Channel Power M-N > 2	BR		-	-	-40	dBm
	EDR		-	-	-40	dBm
	LE		-	-	-30	dBm
	LR		-	-	-30	dBm
BR Modulation Characteristics	DH1		-25	-	25	kHz
	DH3		-40	-	40	kHz
	DH5		-40	-	40	kHz
	Drift Rate		-20	-	20	kHz/50 us
	∆f1 Avg		140	-	175	kHz
	Δf2 Max		115	-		kHz
EDR Modulation Characteristics	RMS DEVM, EDR2			24		%
	RMS DEVM, EDR3			6		%
	99% DEVM, EDR2			37		%
	99% DEVM, EDR3			20		%
	peak DEVM,EDR2			49		%
	peak DEVM,EDR3			13		%
BLE Modulation Characteristics	Δf1 Avg		225	-	275	kHz
	∆f2 Max		185	-	-	kHz
	∆f2 Avg/∆f1 Avg		0.8	1.2	-	-
	776-794 MHz	CDMA2000	-	-161	-	dBm/Hz

Parameter	Condition	Notes	Min	Тур	Max	Units
Transmitter Emissions (BR @Maximum output power)	869–960 MHz	CDMAOne, GSM850	-	-161	-	dBm/Hz
	1450–1495 MHz	DAB	-	-158	-	dBm/Hz
	1570–1580 MHz	GPS	-	-159	-	dBm/Hz
	15921610	GLONASS	-	-159 ⁽²⁾	-	dBm/Hz
	1710–1800 MHz	DSC-1800- Uplink	-	-115	-	dBm/Hz
	1805–1880 MHz	GSM 1800	-	-148	-	dBm/Hz
	1850–1910 MHz	GSM 1900	-	-148	-	dBm/Hz
	1910–1930 MHz	TDSCDMA,LTE	-	-132	-	dBm/Hz
	1930–1990 MHz	GSM1900, CDMAOne, WCDMA	-	-148	-	dBm/Hz
	2010–2075 MHz	TDSCDMA	-	-148	-	dBm/Hz
	2110–2170 MHz	WCDMA	-	-138	-	dBm/Hz
	2305–2370 MHz	LTE Band 40	-	-141	-	dBm/Hz
	2370–2400 MHz	LTE Band 40	-	-135	-	dBm/Hz
	2496–2530 MHz	LTE Band 41	-	-141	-	dBm/Hz
	2530–2560 MHz	LTE Band 41	-	-142	-	dBm/Hz
	2570–2690 MHz	LTE Band 41	-	-138	-	dBm/Hz
	5000–5900 MHz	WLAN 5G	-	-144	-	dBm/Hz

Table 32 Bluetooth Transmitter characteristics with 3.3 V Supply

- 1. Up to 2dB variation in power from channel-to-channel.
- Noise-floor is -159dBm/Hz with spurious tone power of -65dBm at 1601.33 MHz when transmitted signal is at 2402 MHz

3.5.4.2 Transmitter characteristics with 1.85 V Supply

TA = 25°C, PA2G_AVDD/VINBCKDC = 1.85 V. Remaining supplies are at typical operating conditions. Parameters are measured at chip port.⁽¹⁾

Parameter	Condition	Notes	Min	Тур	Max	Units
Transmit Power	BR		-	14	-	dBm
	EDR 2Mbps		-	14	-	dBm
	EDR 3Mbps		-	14	-	dBm
	LE 1Mbps		-	16	-	dBm
	LE 2Mbps		-	16	-	dBm

Parameter	Condition	Notes	Min	Тур	Max	Units
	LR 500 Kbps		-	16	-	dBm
	LR 125 Kbps		-	16	-	dBm
Power Control Step	BR, EDR		-	3	-	dB
Adjacent Channel Power M-N = 2	BR		-		-20	dBm
	EDR		-		-20	dBm
	LE		-		-20	dBm
	LR		-		-20	dBm
Adjacent Channel Power M-N > 2	BR		-		-40	dBm
	EDR		-		-40	dBm
	LE		-		-30	dBm
	LR		-		-30	dBm
BR Modulation Characteristics	DH1		-25		25	kHz
	DH3		-40		40	kHz
	DH5		-40		40	kHz
	Drift Rate		-20		20	kHz/50 us
	Δf1 Avg		140		175	kHz
	Δf2 Max		115			kHz
EDR Modulation Characteristics	RMS DEVM, EDR2		-	24	-	%
	RMS DEVM, EDR3		-	6	-	%
	99% DEVM, EDR2		-	37	-	%
	99% DEVM, EDR3		-	20	-	%
	peak DEVM,EDR2		-	49	-	%
	peak DEVM,EDR3		-	13	-	%
BLE Modulation Characteristics	Δf1 Avg		225		275	kHz
	∆f2 Max		185		-	kHz
	∆f2 Avg/∆f1 Avg		0.8		-	-
Transmitter Emissions(BR	776-794 MHz	CDMA2000	-	-161	-	dBm/Hz
@Maximum output power)	869–960 MHz	CDMAOne, GSM850	-	-161	-	dBm/Hz
	1450–1495 MHz	DAB	-	-159	-	dBm/Hz
	1570–1580 MHz	GPS	-	-159	-	dBm/Hz
	1592–1610 MHz	GLONASS		-159 ⁽²⁾		dBm/Hz

Parameter	Condition	Notes	Min	Тур	Max	Units
	1710–1800 MHz	DSC-1800- Uplink	-	-115	-	dBm/Hz
	1805–1880 MHz	GSM 1800	-	-148	-	dBm/Hz
	1850–1910 MHz	GSM 1900	-	-148	-	dBm/Hz
	1910–1930 MHz	TDSCDMA,LTE	-	-135	-	dBm/Hz
	1930–1990 MHz	GSM1900, CDMAOne, WCDMA	-	-147	-	dBm/Hz
	2010–2075 MHz	TDSCDMA	-	-148	-	dBm/Hz
	2110–2170 MHz	WCDMA	-	-140	-	dBm/Hz
	2305–2370 MHz	LTE Band 40	-	-141	-	dBm/Hz
	2370–2400 MHz	LTE Band 40	-	-134	-	dBm/Hz
	2496–2530 MHz	LTE Band 41	-	-140	-	dBm/Hz
	2530–2560 MHz	LTE Band 41	-	-143	-	dBm/Hz
	2570–2690 MHz	LTE Band 41	-	-140	-	dBm/Hz
	5000–5900 MHz	WLAN 5G	-	-145	-	dBm/Hz

Table 33 Bluetooth Transmitter characteristics with 1.85 V Supply

1. Up to 2dB variation in power from channel-to-channel.

 Noise-floor is -159dBm/Hz with spurious tone power of -67dBm at 1601.33 MHz when transmitted signal is at 2402 MHz

3.5.5 Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain

TA = 25°C. Parameters are measured at chip port and applicable to both PA2G_AVDD/VINBCKDC=1.85V and PA2G_AVDD/VINBCKDC=3.3V

Parameter	Condition/Notes	Min	Тур	Max	Units
Transmit Power	LE 1Mbps	-	-	-0.5	dBm
	LE 2Mbps	-	-	-0.5	dBm
	LR 500 Kbps	-	-	-0.5	dBm
	LR 125 kbps	-	-	-0.5	dBm
Adjacent Channel Power M-N = 2	LE	-	-	-20	dBm
	LR	-	-	-20	dBm
Adjacent Channel Power M-N > 2	LE	-	-	-30	dBm
	LR	-	-	-30	dBm
BR Modulation Characteristics	DH1	-25	-	25	kHz

Parameter	Condition/Notes	Min	Тур	Max	Units
	DH3	-40	-	40	kHz
	DH5	-40	-	40	kHz
	Drift Rate	-20	-	20	kHz
	Δf1 Avg	140	-	175	kHz
	Δf2 Max	115	-	-	kHz
BLE Modulation Characteristics	Δf1 Avg	225	-	275	kHz
	Δf2 Max	185	-	-	kHz
	Δf2 Avg/Δf1 Avg	0.8	1.2	-	-

Table 34 Bluetooth Transmitter Characteristics on Low-Power (LP) 0 dBm RF Chain

3.5.6 Bluetooth Receiver Characteristics on High-Performance (HP) RF Chain

TA = 25°C. Parameters are measured at chip port and applicable to both PA2G_AVDD/VINBCKDC=1.85V and PA2G_AVDD/VINBCKDC=3.3V

Parameter	Condition/Notes	Min	Тур	Max	Units
Sensitivity,Dirty TX off ^{(1),(2)}	BR (1 Mbps), 339 bytes, DH5 Packet, BER= 0.1%	-	-93.5	-	dBm
	EDR2 (2 Mbps), 679 bytes, 2-DH5 Packet, BER= 0.01%	-	-94	-	dBm
	EDR3 (3 Mbps), 1020 bytes, 3- DH5 Packet, BER= 0.01%	-	-88	-	dBm
	LE (1 Mbps), 37 bytes, PER=30.8%	-	-95	-	dBm
	LE (2 Mbps), 37 bytes, PER=30.8%	-	-93	-	dBm
	LR (500 Kbps), 37 bytes, PER=30.8%	-	-102	-	dBm
	LR (125 Kbps), 37 bytes, PER=30.8%	-	-106	-	dBm
Maximum Input Level	BR, EDR2, EDR3,BER= 0.1%	-	-16	-	dBm
	LE 1Mbps, 2Mbps,PER=30.8%	-	-8	-	dBm
	LR 500kps, 125kbps,PER=30.8%	-	-8	-	dBm
C/I Performance	BR, co-channel, BER=0.1%	9	-	-	dB
	BR, adjacent +1/-1 MHz, BER=0.1%	-2	-	-	dB
	BR, adjacent +2/-2 MHz BER=0.1%	-19	-	-	dB
	BR, adjacent >= ±3 MHz BER=0.1%	-19	-	-	dB
	BR, Image channel BER=0.1%	-11	-	-	dB

Parameter	Condition/Notes	Min	Тур	Max	Units
	BR, adjacent to Image channel BER=0.1%	-22	-	-	dB
	EDR2, co-channel BER=0.1%	11	-	-	dB
	EDR2, adjacent +1/-1 MHz BER=0.1%	-2	-	-	dB
	EDR2, adjacent +2/-2 MHz BER=0.1%	-17	-	-	dB
	EDR2, adjacent >= ±3 MHz BER=0.1%	-17	-	-	dB
	EDR2, Image channel BER=0.1%	-9	-	-	dB
	EDR2, adjacent to Image channel BER=0.1%	-22	-	-	dB
	EDR3, co-channel BER=0.1%	19	-	-	dB
	EDR3, adjacent +1/- MHz BER=0.1%	3	-	-	dB
	EDR3, adjacent +2/-2 MHz BER=0.1%	-12	-	-	dB
	EDR3, adjacent >= ±3 MHz BER=0.1%	-12	-	-	dB
	EDR3, Image channel BER=0.1%	-2	-	-	dB
	EDR3, adjacent to Image channel BER=0.1%	-15	-	-	dB
	LE 1Mbps, co-channel PER=30.8%	-	10	-	dB
	LE 1Mbps, adjacent +1 MHz PER=30.8%	-	2	-	dB
	LE 1Mbps, adjacent -1 MHz PER=30.8%	-	-3	-	dB
	LE 1Mbps, adjacent +2 MHz PER=30.8%	-	-22	-	dB
	LE 1Mbps, adjacent -2 MHz PER=30.8%	-	-25	-	dB
	LE 1Mbps, adjacent +3 MHz PER=30.8%	-	-21	-	dB
	LE 1Mbps, adjacent -3 MHz PER=30.8%	-	-27	-	dB
	LE 1Mbps, adjacent >= ±4 MHz PER=30.8%	-	-34	-	dB
	LE 1Mbps, Image channel PER=30.8%	-	-24	-	dB
	LE 1Mbps, +1MHz adjacent to Image channel PER=30.8%	-	-34	-	dB
	LE 1Mbps, -1MHz adjacent to Image channel PER=30.8%	-	-21	-	dB

Parameter	Condition/Notes	Min	Тур	Max	Units
	LE 2Mbps, co-channel PER=30.8%	-	10	-	dB
	LE 2Mbps, adjacent +2 MHz PER=30.8%	-	-4	-	dB
	LE 2Mbps, adjacent -2 MHz PER=30.8%	-	-4	-	dB
	LE 2Mbps, adjacent +4 MHz PER=30.8%	-	-13	-	dB
	LE 2Mbps, adjacent -4 MHz PER=30.8%	-	-18	-	dB
	LE 2Mbps, adjacent >= ±6 MHz PER=30.8%	-	-33	-	dB
	LE 2Mbps, Image channel PER=30.8%	-	-13	-	dB
	LE 2Mbps, +2MHz adjacent to Image channel PER=30.8%	-	-25	-	dB
	LE 2Mbps, -2MHz adjacent to Image channel PER=30.8%	-	-4	-	dB
Table	35 Bluetooth Receiver Characterist	tics on HP F	RF Chain		1

- 1. **BR,EDR:** Sensitivities for channels 38,78 are up to 4dB worse, due to the desensitization of the receiver from harmonics of the system clock (40MHz)
- 2. **BLE,LR:** Sensitivities for channels 19,39 are up to 3dB worse, due to the desensitization of the receiver from harmonics of the system clock (40MHz)

3.5.7 Bluetooth Receiver Characteristics on Low-Power (LP) RF Chain

TA = 25°C. Parameters are measured at chip port and applicable to both PA2G_AVDD/VINBCKDC=1.85V and PA2G_AVDD/VINBCKDC=3.3V

Parameter	Condition/Notes	Min	Тур	Max	Units
Sensitivity,Dirty TX off ^{(1),(2)}	BR (1 Mbps), 339 bytes, DH5 Packet BER= 0.1%	-	-90	-	dBm
	EDR2 (2 Mbps), 679 bytes, 2-DH5 Packet, BER= 0.01%	-	-90.5	-	dBm
	LE (1 Mbps), 37 bytes, PER=30.8%	-	-93.5	-	dBm
	LE (2 Mbps), 37 bytes, PER=30.8%	-	-91	-	dBm
	LR (500 Kbps), 37 bytes, PER=30.8%	-	-100.5	-	dBm
	LR (125 Kbps), 37 bytes, PER=30.8%	-	-104.5	-	dBm

Parameter	Condition/Notes	Min	Тур	Max	Units
Maximum Input Level	BR, EDR2 BER= 0.1%	-	-10	-	dBm
	LE 1Mbps, 2Mbps PER=30.8%	-	-10	-	dBm
	LR 500kps, 125kbps PER=30.8%	-	-10	-	dBm
BER Floor		-	1e-4	-	%
C/I Performance	BR, co-channel BER= 0.1%	9	-	-	dB
	BR, adjacent +1/-1 MHz, BER=0.1%	-2	-	-	dB
	BR, adjacent +2/-2 MHz BER=0.1%	-19	-	-	dB
	BR, adjacent >= ±3 MHz BER=0.1%	-19	-	-	dB
	BR, Image channel BER=0.1%	-11	-	-	dB
	BR, adjacent to Image channel BER=0.1%	-22	-	-	dB
	EDR2, co-channel BER=0.1%	11	-	-	dB
	EDR2, adjacent +1/-1 MHz BER=0.1%	-2	-	-	dB
	EDR2, adjacent +2/-2 MHz BER=0.1%	-17	-	-	dB
	EDR2, adjacent >= ±3 MHz BER=0.1%	-17	-	-	dB
	EDR2, Image channel BER=0.1%	-9	-	-	dB
	EDR2, adjacent to Image channel BER=0.1%	-22	-	-	dB
	LE 1Mbps, co-channel PER=30.8%	-	10	-	dB
	LE 1Mbps, adjacent +1 MHz PER=30.8%	-	2	-	dB
	LE 1Mbps, adjacent -1 MHz PER=30.8%	-	-2	-	dB
	LE 1Mbps, adjacent +2 MHz PER=30.8%	-	-22	-	dB
	LE 1Mbps, adjacent -2 MHz PER=30.8%	-	-24	-	dB
	LE 1Mbps, adjacent +3 MHz PER=30.8%	-	-21	-	dB
	LE 1Mbps, adjacent -3 MHz PER=30.8%	-	-27	-	dB
	LE 1Mbps, adjacent >= ±4 MHz PER=30.8%	-	-34	-	dB
	LE 1Mbps, Image channel PER=30.8%	-	-27	-	dB

Parameter	Condition/Notes	Min	Тур	Max	Units
	LE 1Mbps, +1MHz adjacent to Image channel PER=30.8%	-	-35	-	dB
	LE 1Mbps, -1MHz adjacent to Image channel PER=30.8%	-	-21	-	dB
	LE 2Mbps, co-channel PER=30.8%	-	10	-	dB
	LE 2Mbps, adjacent +2 MHz PER=30.8%	-	-5	-	dB
	LE 2Mbps, adjacent -2 MHz PER=30.8%	-	-3	-	dB
	LE 2Mbps, adjacent +4 MHz PER=30.8%	-	-12	-	dB
	LE 2Mbps, adjacent -4 MHz PER=30.8%	-	-18	-	dB
	LE 2Mbps, adjacent >= ±6 MHz PER=30.8%	-	-34	-	dB
	LE 2Mbps, Image channel PER=30.8%	-	-12	-	dB
	LE 2Mbps, +2MHz adjacent to Image channel PER=30.8%	-	-24	-	dB
	LE 2Mbps, -2MHz adjacent to Image channel PER=30.8%	-	-5	-	dB

Table 36 Bluetooth Receiver Characteristics on LP RF Chain

- 1. **BR,EDR:** Sensitivities for channels 38,78 are up to 4dB worse, due to the desensitization of the receiver from harmonics of the system clock (40MHz)
- 2. **BLE,LR:** Sensitivities for channels 19,39 are up to 3dB worse, due to the desensitization of the receiver from harmonics of the system clock (40MHz)

3.6 Typical Current Consumption

3.6.1 3.3V

3.6.1.1 WLAN 2 GHz

Parameter	Description	Value	Units
1 Mbps Listen	LP Chain	13.82	mA
1 Mbps RX Active	LP Chain	19.67	mA
6 Mbps RX Active	HP Chain	48.2	mA
72 Mbps RX Active	HP Chain	48.2	mA
11 Mbps TX Active	Tx Power = Maximum (20dBm)	270	mA
	Tx Power = 10dBm	130	mA
6 Mbps TX Active	Tx Power = Maximum (20dBm)	285	mA
	Tx Power = 10dBm	130	mA
54 Mbps TX Active	Tx Power = Maximum (17dBm)	200	mA
	Tx Power = 10dBm	130	mA
72 Mbps TX Active	Tx Power = Maximum (14dBm)	180	mA
	Tx Power = 10dBm	130	mA
Deep Sleep	GPIO Wake up	0.9	uA
Standby	State retained	13.1	uA
Standby Associated, DTIM = 1		293	uA

Parameter	Description	Value	Units
Standby Associated, DTIM = 3		119	uA
Standby Associated, DTIM = 10		51	uA

3.6.1.2 Bluetooth BR and EDR

Parameter	Description	Value	Units
TX Active Current, 1 Mbps BR	LP chain, Tx Power = 0 dBm	9.9	mA
	HP chain, Tx Power = Maximum (14 dBm)	130	mA
RX Active Current, 1 Mbps BR	LP chain	10.2	mA
	HP chain	26.7	mA
TX Active Current, 2 Mbps EDR	HP chain, Tx Power = Maximum (14 dBm)	130	mA
RX Active Current, 2 Mbps EDR	LP chain	10.2	mA
	HP chain	26.7	mA
TX Active Current, 3 Mbps EDR	HP chain, Tx Power = Maximum (14 dBm)	140	mA
RX Active Current, 3 Mbps EDR	HP chain	26.7	mA
Deep Sleep	GPIO Wake up	0.9	uA
Standby	State retained	13.1	uA

3.6.1.3 Bluetooth LE

Parameter	Description	Value	Units
TX Active Current	LP chain, Tx Power = 0 dBm	8.9	mA
	LP Chain, Tx Power = 4 dBm	-	mA
	HP Chain, Tx Power = Maximum (20 dBm)	190	mA
RX Active Current	LP chain	10.9	mA
	HP chain	26.7	mA
Deep Sleep	GPIO Wake up	0.9	uA
Standby	State retained	13.1	uA
Advertising, Unconnectable	Advertising on all 3 channels	22.4	uA
	Advertising Interval = 1.28s		
	Tx Power = 0 dBm, LP chain		

Parameter	Description	Value	Units
Advertising, Connectable	Advertising on all 3 channels Advertising Interval = 1.28s Tx Power = 0 dBm, LP chain	30.1	uA
Connected	Connection Interval = 1.28s No Data Tx Power = 0 dBm, LP chain	21.8	uA
Connected	Connection Interval = 200ms No Data Tx Power = 0 dBm, LP chain	72	uA
Scanning	Scan Interval = 1.28s Scan Window = 11.25ms LP Chain	-	uA

3.6.2 1.85V

**Please Note that the below efficiency values are at 3.6V input to Buck Converter. If a Buck Converter with better efficiency is chosen, then the current consumption numbers will be lower.

3.6.2.1 WLAN 2 GHz							
Parameter	Description	Value @ 3.6V	Value @ 1.85V	Units			
1 Mbps Listen	LP Chain	13.4	23.5	mA			
1 Mbps RX Active	LP Chain	19	33.3	mA			
6 Mbps RX Active	HP Chain	37	65	mA			

Parameter	Description	Value @ 3.6V	Value @ 1.85V	Units
72 Mbps RX Active	HP Chain	39	68.3	mA
11 Mbps TX Active	Tx Power = Maximum (17dBm)	133	233	mA
	Tx Power = 10dBm	69	121	mA
6 Mbps TX Active	Tx Power = Maximum (17dBm)	136	238.2	mA
	Tx Power = 10dBm	67	117.3	mA
54 Mbps TX Active	Tx Power = Maximum (14dBm)	106	185.6	mA
	Tx Power = 10dBm	67	117.3	mA
72 Mbps TX Active	Tx Power = Maximum (12dBm)	97	170	mA
	Tx Power = 10dBm	87	152.4	mA
Deep Sleep	GPIO Wake up	0.9	1.6	uA
Standby	State retained	12.3	21.5	uA
Standby Associated, DTIM = 1		250	438	uA
Standby Associated, DTIM = 3		92	161.2	uA
Standby Associated, DTIM = 10		41	72	uA

3.6.2.2 Bluetooth BR and EDR

Parameter	Description	Value @ 3.6V	Value @ 1.85V	Units
TX Active Current, 1 Mbps BR	LP chain, Tx Power = 0 dBm HP chain, Tx Power = Maximum (14 dBm)	8.6 -	15 -	mA mA
RX Active Current, 1 Mbps BR	LP chain	9.3	16.3	mA
	HP chain	23	40.3	mA
TX Active Current, 2 Mbps EDR	HP chain, Tx Power = Maximum (14 dBm)	-	-	mA
RX Active Current, 2 Mbps EDR	LP chain	10.2	18	mA
	HP chain	24	42	
TX Active Current, 3 Mbps EDR	HP chain, Tx Power = Maximum (14 dBm)	-	-	mA
RX Active Current, 3 Mbps EDR	HP chain	24	42	mA
Deep Sleep	GPIO Wake up	0.9	1.6	uA

Parameter	Description	Value @ 3.6V	Value @ 1.85V	Units
Standby	State retained	12.3	21.5	uA
Inquiry Scan	Scan Interval = 1.28s Scan Window = 128ms	2.7	4.73	mA
Page Scan	Scan Interval = 1.28s Scan Window = 128ms	2.7	4.73	mA
Inquiry and Page Scan	Inquiry/Page Scan Interval = 1.28s Scan Window = 128ms	5.5	9.6	mA
SNIFF Mode	Sniff Interval = 500ms Attempts = 2 Tx Power = 4 dBm, HP chain	263	461	uA

3.6.2.3 Bluetooth LE				
Parameter	Description	Value @ 3.6V	Value @ 1.85V	Units
TX Active Current, BLE-1Mbps	LP chain, Tx Power = 0 dBm	8.6	15.1	mA
	LP Chain, Tx Power = 4 dBm	13.6	23.8	mA
	HP Chain, Tx Power = Maximum (16 dBm)	-	-	mA
RX Active Current, BLE-1Mbps	LP chain	9.6	17	mA
	HP chain	-	-	mA
Deep Sleep	GPIO Wake up	0.9	1.6	uA
Standby	State retained	12.3	21.5	uA
Advertising, Unconnectable	Advertising on all 3 channels	-	-	uA
	Advertising Interval = 1.28s			
	Tx Power = 0 dBm, LP chain			
Advertising, Connectable	Advertising on all 3 channels	31	54.3	uA
	Advertising Interval = 1.28s			
	Tx Power = 0 dBm, LP chain			
Connected	Connection Interval = 1.28s	25	44	uA
	No Data			
	Tx Power = 0 dBm, LP chain			
Connected	Connection Interval = 200ms	69	121	uA
	No Data			
	Tx Power = 0 dBm, LP chain			
Scanning	Scan Interval = 1.28s	-	-	uA
	Scan Window = 11.25ms			

4 RS9116 QMS SoC Detailed Description

4.1 Overview

RS9116 is an ultra-low-power, single spatial stream, 802.11n + BT/BLE5.0 Convergence SoC. The RS9116 chipset family provides low-cost CMOS integration of a multi-threaded MAC processor (threadArch®), baseband digital signal processing, analog front-end, calibration eFuse, 2.4GHz RF transceiver, integrated power amplifier, and Quad-SPI Flash thus providing a fully-integrated solution for a range of hosted and embedded wireless applications. With Silicon Labs' embedded four-threaded processor and on-chip ROM and RAM, these chipsets enable integration into low-cost and zero host load applications. With an integrated PMU and support for a variety of digital peripherals, RS9116 enables very low-cost implementations for wireless hosted and embedded applications. It can be connected to a host processor through SDIO, USB, SPI or UART interfaces. Wireless firmware upgrades and provisioning are supported.

4.2 Chipset Features

4.2.1 WLAN

- Compliant to single-spatial stream IEEE 802.11 b/g/n with single band support
- Support for 20 MHz channel bandwidth
- Transmit power up to +20 dBm with integrated PA
- Receive sensitivity as low as -98.5 dBm
- Data Rates:- 802.11b: Up to 11 Mbps ; 802.11g: Upto54 Mbps ; 802.11n: MCS0 to MCS7
- Operating Frequency Range:- 2412 MHz 2484 MHz

4.2.1.1 MAC

- Conforms to IEEE 802.11b/g/n/j standards for MAC
- Dynamic selection of fragment threshold, data rate, and antenna depending on the channel statistics
- Hardware accelerators for WEP 64/128-bit and AES
- WPA, WPA2, and WMM support
- AMPDU and AMSDU aggregation for high performance
- Firmware downloaded from host based on application
- Hardware accelerators for DH (for WPS)

4.2.1.2 Baseband Processing

- Supports DSSS for 1, 2 Mbps and CCK for 5.5, 11 Mbps
- Supports all OFDM data rates (6, 9, 12, 18, 24, 36, 48, 54 Mbps, MCS0 to MCS7), and Short GI in Hosted mode
- Supports IEEE 802.11n single-stream modes with data rates up to 150 Mbps
- Supports long, short, and HT preamble modes
- High-performance multipath compensation in OFDM, DSSS, and CCK modes

4.2.2 Bluetooth

- Transmit power up to +20 dBm with integrated PA
- Receive sensitivity:- LE: -95 dBm, LR 125 Kbps: -106 dBm
- Compliant to dual-mode Bluetooth 5
- <8 mA transmit current in Bluetooth 5 mode, 2 Mbps data rate
- Data rates: 125 Kbps, 500 Kbps, 1 Mbps, 2Mbps, 3 Mbps
- Operating Frequency Range:- 2.402 GHz 2.480 GHz
- Bluetooth 2.1 + EDR, Bluetooth Low Energy 4.0 / 4.1 / 4.2 / 5.0

- Bluetooth Low Energy 1 Mbps, 2 Mbps and Long Range modes
- Bluetooth Low Energy Secure connections
- Bluetooth Low Energy supports central role and peripheral role concurrently.
- Bluetooth auto rate and auto TX power adaptation
- Scatternet* with two slave roles while still being visible.

* For detailed list of Software features, and available profiles, please refer the Software Reference Manuals, or, Contact Silicon Labs for availability.

4.2.2.1 MAC

4.2.2.1.1 Link Manager

- Creation, modification & release of logical links
- Connection establishment between Link managers of two Bluetooth devices
- Link supervision is implemented in Link Manager
- Link power control is done depending on the inputs from Link Controller
- Enabling & disabling of encryption & decryption on logical links
- Services the data transport requests from L2CAP and provides required QOS
- Support for security using ECDH hardware accelerator

4.2.2.1.2 Link Controller

- Encodes and decodes header of BT packets
- Manages flow control, acknowledgment, retransmission requests, etc.
- Stores the last packet status for all logical transports
- Chooses between SCO & ACL buffers depending on the control information coming from BBP resource manager
- · Indicates the success status of packet transmission to upper layers
- Indicates the link quality to the LMP layer

4.2.2.1.3 Host Controller

- Receives & decodes commands received from the Bluetooth Host.
- Propagates the decoded commands to respective modules
- Responsible for transmitting and receiving packets from and to Host
- Formats the responses coming from other modules of Bluetooth Controller as events and sends them to the Host.

4.2.2.1.4 Device Manager

- Controls Scan & Connection processes
- Controls all BT Device operations except data transport operations
- Storing link keys
- BT Controller state transition management
- Slot synchronization & management
- Access contract management
- Scheduler

4.2.2.2 Baseband Processing

- Supports GFSK (1 Mbps), EDR-DQPSK, EDR-D8PSK
- Supports BLE and Bluetooth long range

• Supports Data rates up to 3 Mbps

4.2.3 RF Transceiver

- Integrated 2.4 GHz transceiver with highly programmable operating modes
- Internal oscillator with 40 MHz crystal
- Inbuilt automatic boot up and periodic calibration enables ease of integration

4.2.4 Host Interfaces

- SDIO
 - Version 2.0-compatible
 - Supports SD-SPI, 1-bit, and 4-bit SDIO modes
 - o Operation up to a maximum clock speed of 50 MHz
- SPI Interface
 - Operation up to a maximum clock speed of 100 MHz
- USB 2.0
 - Supports 480Mbps "High Speed" (HS), 12Mbps "Full Speed" (FS) and 1.5Mbps "Low Speed" (LS) serial data transmission
 - o Support USB CDC and device mode
- UART
 - o Supports variable baud rates between 9600 and 3686400 bps
 - o AT command interface for configuration and data transmission/reception

NOTE: Hosted mode (n-Link) supports USB 2.0 and SDIO. Embedded Mode (WiSeConnect) supports SPI, USB CDC, and UART.

4.2.4.1 Auto Host detection

RS9116 detects the host interface automatically after connecting to respective host controllers like SDIO, SPI, UART, USB and USB-CDC. SDIO/SPI host interface is detected through the hardware packet exchanges. UART host interface is detected through the software based-on the received packets on the UART interface. USB-Device mode interface is detected through the hardware based-on VBUS signal level. The host interface detection between USB & USB-CDC will be taken care by the firmware based on the USB CDC SEL GPIO. This Host configuration is stored in always-on domain registers after detection (on power up) and reused this information at each wakeup.

4.2.5 Wireless Coexistence Manager

- Arbitration between Wi-Fi, Bluetooth, and Bluetooth Low Energy
- Application aware arbitration
- Adaptive frequency hopping (AFH) in Bluetooth is based on WLAN channel usage
- Pre inter thread interrupts generation for radio switching
- QoS assurance across different traffics

4.2.6 Software

The RS9116 software package supports 802.11 b/g/n Client, Access Point (Up to 16 clients), Concurrent Client and Access Point mode, Enterprise Security dual-mode BT 5.0 functionality on a variety of host platforms and operating systems. The software package includes complete firmware, reference drivers, application profiles and configuration graphical user interface (GUI) for Linux operating systems. The Wi-Fi driver has support for a simultaneous access point, and client mode. Bluetooth host driver utilizes Opensource host stacks like BlueZ for Linux. The application layer supports all profiles supported by BlueZ on Linux. It has a wireless coexistence manager to arbitrate between protocols.

The RS9116 software package is available in two flavors

- Hosted mode (n-Link[™]): Wi-Fi stack, Bluetooth stack and profiles, and all network stacks reside on the host processor. Support for multiple Virtual Access Points available.
- Embedded mode (WiSeConnect™): Wi-Fi stack, TCP/IP stack, IP modules, Bluetooth stack and some profiles reside in RS9116; Some of the Bluetooth profiles reside in the host processor

NOTE: Please refer the Software Manuals (TRM and PRM) for more details.

4.2.6.1 Hosted Mode (n-Link[™])

- Available host interfaces: SDIO 2.0 and USB HS
- Application data throughput up to 50 Mbps (Hosted Mode) in 802.11n with 20MHz bandwidth.
- Host drivers for Linux
- Support for Client mode, Access point mode (Upto 16 clients), Concurrent Client and Access Point mode, Enterprise Security
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

4.2.6.2 Embedded Mode (WiSeConnect[™])

- Available host interface: UART, SPI, SDIO*, and USB CDC
- TCP throughput > 20Mbps over SDIO host interface with 20 MHz bandwidth
- Support for Embedded Client mode, Access Point mode (Upto 8 clients), Concurrent Client and Access Point mode, and Enterprise Security
- Supports advanced security features: WPA/WPA2-Personal and Enterprise*
- Integrated TCP/IP stack (IPV4/IPV6), HTTP/HTTPS, DHCP, ICMP, SSL 3.0/TLS1.2, WebSockets, IGMP, DNS, DNS-SD, SNMP, FTP Client, MQTT*
- Bluetooth inbuilt stack support for L2CAP, RFCOMM, SDP, SPP, GAP
- Bluetooth profile support* for GAP, SDP, L2CAP, RFCOMM, SPP, GATT, PBAP
- Wireless firmware upgrade and provisioning
- Support for concurrent Wi-Fi, dual-mode Bluetooth 5

* For detailed list of Software features, and available profiles, please refer the Software Reference Manuals, or, Contact Silicon Labs for availability.

4.2.7 Security

RS9116 supports multiple levels of security capabilities available for the development of IoT devices.

- Accelerators: AES128/256 in Embeded Mode
- WPA/WPA2-Personal, WPA/WPA2 Enterprise for Client*
- Secure Firmware upgrade* with backup
 - * For detailed list of Software features, and available profiles, please refer the Software Reference Manuals, or, Contact Silicon Labs for availability.

4.2.8 System Power Supply Configurations

RS9116 chipsets support highly flexible power supply configurations for various application scenarios. Few application scenarios are below

- 3.3V single supply A single 3.3V supply derived from the system PMU can be input to all I/O supplies.
- 1.85V single supply A single 1.85V supply derived from the system PMU can be input to all I/O supplies. The
 maximum transmitter power is reduced in 1.85V single supply mode.
- 1.85V and 3.3V supply A 1.85V supply derived from the system PMU can be input to all I/O supplies except PA2G_AVDD. A 3.3V supply derived from system PMU can be fed to the power amplifier supply pin PA2G_AVDD. In this mode, I/O's can operate at 1.85V without a penalty in the maximum transmit power
- Wide input supply In a system without a PMU, a primary cell can be connected to all the I/O pins including PA2G_AVDD. In this mode, the maximum output power is a function of the primary cell voltage.

4.2.9 Power Management

The RS9116 chipsets have an internal power management subsystem, including DC-DC converters and linear regulators. This subsystem generates all the voltages required by the chipset to operate from a wide variety of input sources.

- LC DC-DC switching converter for RF and Digital blocks
 - Wide input voltage range (1.85 to 3.6V) on pin VINBCKDC
 - o Output 1.4V and 300mA maximum load on pin VOUTBCKDC
- SC DC-DC Switching converter for Always-ON core logic domain
 - Wide input voltage range (1.85 to 3.6V) on pin UULP_VBATT_1 and UULP_VBATT_2
 - o Output 1.05V
- LDO SOC Linear regulator for digital blocks
 - o Input 1.4V from LC DC-DC or external regulated supply on pin VINLDOSOC
 - Output 1.15V and 300mA maximum load on pin VOUTLDOSOC
- LDO RF and AFE Linear regulator for RF and AFE
 - Input 1.4V from LC DC-DC or external regulated supply on pin RF_AVDD
 - o Output 1.1V and 20mA maximum load on pin VOUTLDOAFE
- LDO FLASH Linear regulator for internal and external Flash
 - Input Wide input voltage range (1.85 to 3.6V) on pin VINLDO1P8
 - o Output 1.8V and 20mA maximum load on pin VOUTLDO1P8

4.2.10 Low power modes

It supports Ultra-low power consumption with multiple power modes to reduce the system energy consumption.

- Dynamic Voltage and Frequency Scaling
- Low Power (LP) mode with only the host interface active
- Deep sleep (ULP) mode with only the sleep timer active with and without RAM retention
- Wi-Fi standby associated mode with automatic periodic wake-up
- Automatic clock gating of the unused blocks or transit the system from Normal to LP or ULP modes

4.2.10.1 ULP mode

In Ultra Low Power mode, the deep sleep manager has control over the other subsystems and processors and controls their active and sleep states. During deep sleep, the always-on logic domain operates on a lowered supply and a 32 KHz low-frequency clock to reduce power consumption. The ULP mode supports the following wake-up options:

- Timeout wakeup Exit sleep state after programmed timeout value.
- GPIO Based Wakeup: Exit sleep state when GPIO goes High/Low based on programmed polarity.
- Analog Comparator Based wakeup Exit sleep state on an event at the analog comparator.
- RTC Timer wakeup Exit Sleep state on timeout of RTC timer

WatchDog Interrupt based wakeup - Exit Sleep state upon watchdog interrupt timeout.

ULP mode is not supported in the USB interface mode

4.2.10.2 LP mode

In Low Power mode, Network processor maintains system state and gate all internal high frequency clocks. But host interface is ready to accept any command from host controller.

The LP mode supports the following wake-up options:

- Host Request Exit sleep state on a command from HOST controller. whenever a command from the host is received, the processor serves the request with minimum latency and the clock is gated immediately after the completion of the operation to reduce power consumption
- GPIO based wakeup Wakeup can be initiated through a GPIO pin
- Timeout wakeup Exit sleep state after the programmed timeout value

4.2.11 Memory

4.2.11.1 On-chip memory

The threadArch® processor has the following memory:

- On-chip SRAM for the wireless stack.
- 512Kbytes of ROM which holds the Secure primary bootloader, Network Stack, Wireless stacks and security functions.
- 16Kbytes of Instruction cache enabling eXecute In Place (XIP) with quad SPI flash memory.
- eFuse of 512 bytes (used to store primary boot configuration, security and calibration parameters)

4.2.11.2 Serial Flash

The RS9116 utilizes a serial Flash to store processor instructions and other data. The SPI Flash Controller is a 1/2/4wired interface for serial access of data from Flash. It can be used in either Single, Dual or Quad modes. Instructions are read using the Direct Fetch mode while data transfers use the Indirect Access mode.

The SPI Flash Controller in RS9116 has been designed with programmable options for most of the single and multi-bit operations so that it can interface with Flash ICs from multiple vendors. The list of recommended serial Flash devices and vendors is given below:

S.No.	Vendor	Part #	Flash Density (in Mbit)	Vcc	Bus Width
1	GigaDevice	GD25LQ32D	32	1.65V-2.0V	1/2/4-bit
2	Macronix	MX25R3235F	32	1.65V-3.6V	1/2/4-bit

5 RS9116 QMS SoC Reference Schematics, BOM and Layout Guidelines

5.1 RS9116 QMS SoC

5.1.1 SDIO/SPI/UART

5.1.1.1 Schematics

The below diagram shows the typical schematic with SDIO/SPI/UART Host Interface and Internal Flash.

Figure 14 Schematics for QMS SoC with SDIO/SPI/UART Host Interface

- 1. PA2G_AVDD can be driven by 3.3V source irrespective of other sources for Maximum Transmit Output power.
- 2. The supplies can be driven by different voltage sources within the recommended operating conditions specified in Specifications section.
- 3. SDIO_IO_VDD can be driven by a different source irrespective of other sources to support different interfaces.
- 4. In SDIO mode, pull-up resistors should be present on SDIO_CMD & SDIO Data lines as per the SDIO physical layer specification, version 2.0.
- 5. In SPI mode, ensure that the input signals, SPI_CS and SPI_CLK are not floating when the device is powered up and reset is deasserted. This can be done by ensuring that the host processor configures its signals (outputs) before deasserting the reset. SPI_INTR is the interrupt signal driven by the slave device. This signal may be configured as Active-high or Active-low. If it is active-high, an external pull-down resistor may be required. If it is active-low, an external pull-up resistor may be required. This resistor can be avoided if the following action needs to be carried out in the host processor
 - a. To use the signal in the Active-high or Active-low mode, ensure that, during the power up of the device, the Interrupt is disabled in the Host processor before deasserting the reset. After deasserting the reset, the Interrupt needs to be enabled only after the SPI initialization is done and the Interrupt mode is programmed to either Active-high or Active-low mode as required.
 - b. The Host processor needs to be disable the interrupt before the ULP Sleep mode is entered and enable it after SPI interface is reinitialized upon wakeup from ULP Sleep.
- 6. In UART mode, ensure that the input signals, UART_RX and UART_CTS are not floating when the device is powered up and reset is deasserted. This can be done by ensuring that the host processor configures its signals (outputs) before deasserting the reset.
- 7. Resistor "R1" should not be populated if UART is used as Host Interface.

5.1.1.2 Bill of Materials

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
1	2	C1,C2	10uF	CAP CER 10UF 10V X5R 0805	0805	Murata	GRM21BR61A106KE19L
2	8	C6,C9,C10,C17,C19,C20, C22,C23	1uF	CAP CER 1UF 10V 10% X5R 0402	0402	Murata	GRM155R61A105KE15D
3	1	C4	0.7pF	CAP CER 0.7PF 50V C0G/NP0 0201	0201	Murata	GRM0335C1HR70WA01D
4	6	Z1,C5,C7,C11,C13,C16	8.2pF	CER CHP 8.2P +/-0.25P C0G 0201 25V	0201	Murata	GRM0335C1E8R2CD01D

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
5	4	C3,C8,C21,C25	0.1uF	CAP CER 0.1UF 10V X5R 0402	0402	Murata	GRM155R61A104KA01D
6	1	C15	1pF	CAP CER 1PF 25V C0G/NP0 0201	0201	Murata	GJM0335C1E1R0WB01D
7	1	C18	2.2uF	CAP CER 2.2UF 6.3V X5R 0402	0402	Murata	GRM155R60J225KE95D
8	1	C24	10nF	CAP CER 10000PF 25V X5R 0201	0201	Murata	GRM033R61E103KA12D
9	1	J1		Antenna/U.FL			
10	1	L1	1uH	FIXED IND 1UH 2.3A 70 MOHM SMD	0805	Murata	DFE201210S-1R0M=P2
11	1	L2	3.3nH	FIXED IND 3.3NH 450MA 250 MOHM	0201	Murata	LQP03TN3N3B02D
12	1	L3	2nH	FIXED IND 2NH 600MA 150 MOHM SMD	0201	Murata	LQP03TN2N0C02D
13	1	L4	10nH	FIXED IND 10NH 250MA 700 MOHM	0201	Murata	LQP03TN10NJ02D
14	1	R1	33E	RES SMD 33 OHM 5% 1/10W	0402	Panasonic	ERJ-2GEJ330X
15	1	SW1		GaAs 0.5-6GHz SP3T Switch	USON8L	Hexawave	HWS520
16	1	U1	BPF	Multi Layer band Pass layer	SMD	Mag Layers	LTB-1005-2G4H6-A4-PS
17	1	U2		Silicon Labs Single Band Chip		Silicon Labs	RS9116N-SB00-QMS / RS9116W-SB00-QMS
18	1	Y1	40MHz	40MHz Crystal	2x1.6mm	TXC	8Y40070013
19	2	Z2,Z3		Optional Capacitors for Antenna Matching	0201		
20	2	C12,C14	1pF(NP)		0201		

Table 37 Bill of Materials for QMS SoC with SDIO/SPI/UART Host Interface

5.1.2 USB/USB-CDC

5.1.2.1 Schematics

The below diagram shows the typical schematic with USB/USB-CDC Host Interface and Internal Flash.

Figure 15 Schematics for QMS SoC with USB/USB-CDC Host Interface

- 1. PA2G_AVDD can be driven by 3.3V source irrespective of other sources for Maximum Transmit Output power.
- 2. The supplies can be driven by different voltage sources within the recommended operating conditions specified in Specifications section.
- 3. Ensure that the pin USB_CDC_DIS is left unconnected to ensure normal USB functionality.
- 4. Resistor **"R2**" should not be populated if normal USB is used as Host Interface.

5.1.2.2 Bill of Materials

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
1	2	C1,C2	10uF	CAP CER 10UF 10V X5R 0805	0805	Murata	GRM21BR61A106KE19L
2	8	C6,C9,C10,C17,C19,C20, C22,C23	1uF	CAP CER 1UF 10V 10% X5R 0402	0402	Murata	GRM155R61A105KE15D
3	1	C4	0.7pF	CAP CER 0.7PF 50V C0G/NP0 0201	0201	Murata	GRM0335C1HR70WA01D
4	6	Z1,C5,C7,C11,C13,C16	8.2pF	CER CHP 8.2P +/-0.25P C0G 0201 25V	0201	Murata	GRM0335C1E8R2CD01D
5	6	C3,C8,C21,C25,C26,C27	0.1uF	CAP CER 0.1UF 10V X5R 0402	0402	Murata	GRM155R61A104KA01D
6	1	C15	1pF	CAP CER 1PF 25V C0G/NP0 0201	0201	Murata	GJM0335C1E1R0WB01D
7	1	C18	2.2uF	CAP CER 2.2UF 6.3V X5R 0402	0402	Murata	GRM155R60J225KE95D
8	1	C24	10nF	CAP CER 10000PF 25V X5R 0201	0201	Murata	GRM033R61E103KA12D
9	1	J1		Antenna/U.FL			

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
10	1	L1	1uH	FIXED IND 1UH 2.3A 70 MOHM SMD	0805	Murata	DFE201210S-1R0M=P2
11	1	L2	3.3nH	FIXED IND 3.3NH 450MA 250 MOHM	0201	Murata	LQP03TN3N3B02D
12	1	L3	2nH	FIXED IND 2NH 600MA 150 MOHM SMD	0201	Murata	LQP03TN2N0C02D
13	1	L4	10nH	FIXED IND 10NH 250MA 700 MOHM	0201	Murata	LQP03TN10NJ02D
14	1	R1	200E	RES SMD 200 OHM 1% 1/16W 0402	0402	Yageo	RC0402FR-07200RL
15	1	R2	4.7K	RES SMD 4.7K OHM 1% 1/16W 0402	0402	Yageo	RC0402FR-074K7L
16	1	SW1		GaAs 0.5-6GHz SP3T Switch	USON8L	Hexawave	HWS520
17	1	U1	BPF	Multi Layer band Pass layer	SMD	Mag Layers	LTB-1005-2G4H6-A4-PS
18	1	U2		Silicon Labs Single Band Chip		Silicon Labs	RS9116N-SB00-QMS / RS9116W-SB00-QMS
19	1	Y1	40MHz	40MHz Crystal	2x1.6mm	ТХС	8Y40070013
20	2	Z2,Z3		Optional Capacitors for Antenna Matching	0201		
21	2	C12,C14	1pF(NP)		0201		

Table 38 USB Bill of Materials for QMS SoC

5.1.3 External Flash

5.1.3.1 Schematics

The below diagram shows the typical schematic with External Flash. UART Host Interface is shown for reference.

Figure 16 External Flash Schematics for QMS SoC

- 1. PA2G_AVDD can be driven by 3.3V source irrespective of other sources for Maximum Transmit Output power.
- 2. The supplies can be driven by different voltage sources within the recommended operating conditions specified in Specifications section.
- 3. Ensure that the input signals, UART_RX and UART_CTS are not floating when the device is powered up and reset is deasserted. This can be done by ensuring that the host processor configures its signals (outputs) before deasserting the reset.

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
1	2	C1,C2	10uF	CAP CER 10UF 10V X5R 0805	0805	Murata	GRM21BR61A106KE19L
2	8	C6,C9,C10,C17,C19,C20, C22,C23	1uF	CAP CER 1UF 10V 10% X5R 0402	0402	Murata	GRM155R61A105KE15D
3	1	C4	0.7pF	CAP CER 0.7PF 50V C0G/NP0 0201	0201	Murata	GRM0335C1HR70WA01D
4	6	Z1,C5,C7,C11,C13,C16	8.2pF	CER CHP 8.2P +/-0.25P C0G 0201 25V	0201	Murata	GRM0335C1E8R2CD01D
5	4	C3,C8,C21,C25	0.1uF	CAP CER 0.1UF 10V X5R 0402	0402	Murata	GRM155R61A104KA01D
6	1	C15	1pF	CAP CER 1PF 25V C0G/NP0 0201	0201	Murata	GJM0335C1E1R0WB01D
7	1	C18	2.2uF	CAP CER 2.2UF 6.3V X5R 0402	0402	Murata	GRM155R60J225KE95D
8	1	C24	10nF	CAP CER 10000PF 25V X5R 0201	0201	Murata	GRM033R61E103KA12D
9	1	J1		Antenna/U.FL			

5.1.3.2 Bill of Materials

S.No.	Quantity	Reference	Value	Description	JEDEC	Manufacturer	Part Number
10	1	L1	1uH	FIXED IND 1UH 2.3A 70 MOHM SMD	0805	Murata	DFE201210S-1R0M=P2
11	1	L2	3.3nH	FIXED IND 3.3NH 450MA 250 MOHM	0201	Murata	LQP03TN3N3B02D
12	1	L3	2nH	FIXED IND 2NH 600MA 150 MOHM SMD	0201	Murata	LQP03TN2N0C02D
13	1	L4	10nH	FIXED IND 10NH 250MA 700 MOHM	0201	Murata	LQP03TN10NJ02D
14	1	SW1		GaAs 0.5-6GHz SP3T Switch	USON8L	Hexawave	HWS520
15	1	U1	BPF	Multi Layer band Pass layer	SMD	Mag Layers	LTB-1005-2G4H6-A4-PS
16	1	U2		Silicon Labs Single Band Chip		Silicon Labs	RS9116N-SB0N-QMS / RS9116W-SB0N-QMS
17	1	U3	Flash	External Flash Memory			
18	1	Y1	40MHz	40MHz Crystal	2x1.6mm	ТХС	8Y40070013
19	2	Z2,Z3		Optional Capacitors for Antenna Matching	0201		
20	2	C12,C14	1pF(NP)		0201		

Table 39 External Flash Bill of Materials for QMS SoC

5.1.4 Reduced Front-End Option

5.1.4.1 Schematics

The below diagram shows the typical schematic for reduced Front-End option.

Figure 17 Reduced Front-End Schematics for QMS SoC

1. There is a degradation of 1dB in Transmit Output Power and Receive Sensitivity with the above Front-End.

5.2 Layout Guidelines for QMS SoC

The following guidelines outline the integration of the QMS SoC :

- 1. The following Supply Pins needs to be STAR routed from the Supply Source
 - a. VINBCKDC
 - b. VINLDO1P8
 - c. IO_VDD_1, IO_VDD_2
 - d. ULP_IO_VDD
 - e. UULP_VBATT_1
 - f. UULP_VBATT_2
 - g. RF_VBATT
 - h. PA2G_AVDD
 - i. SDIO IO VDD
- 2. The RF_PORT signal may be directly connected to an on-board chip antenna or terminated in an RF connector of any form factor for enabling the use of external antennas.
- 3. There need to be DC blocking capacitors (8.2pF) on RF_PORT if connected to Antenna
- 4. The RF trace on RF_OUT should have a characteristic impedance of 50 Ohms. Any standard 50 Ohms RF trace (Microstrip or Coplanar wave guide) may be used. The width of the 50 Ohms line depends on the PCB stack, e.g., the dielectric of the PCB, dielectric constant of the material, thickness of the dielectric and other factors. Consult the PCB fabrication unit to get these factors right.
- To evaluate transmit and receive performance like Tx Power and EVM, Rx sensitivity and the like, an RF connector would be required. A suggestion is to place a 'microwave coaxial connector with switch' between RF_OUT and the antenna.
- 6. The layout guidelines for BUCK are :

Minimise the loop area formed by inductor switching node, output capacitors & input capacitors. This helps keep high current paths as short as possible. Keeping high current paths shorter and wider would help decrease trace inductance & resistance. This would significantly help increase the efficiency in high current applications. This reduced loop area would also help in reducing the radiated EMI that may affect nearby components.

- a. VINBCKDC Capacitor should be very close to the Chip Pin & the Ground Pad of the capacitor should have direct vias to the Ground Plane underneath.
- b. Buck Inductor should be close to Chip VOUTBCKDC pin and buck capacitor should be placed closed to the Inductor, the Ground Pad of the capacitor should have direct vias to the Ground Plane underneath.
- c. The Ground Plane underneath the Buck Inductor in the Top Layer should be made as an isolated copper patch and should descend down to the Second Layer (Main Ground) through multiple Vias.
- d. The path from VOUTBCKDC to VINLDOSOC is a high current path. The Trace should be as short & wide as possible and is recommended to run Grounded Shield Traces on either side of this High Current Trace
- e. The Capacitor on VINLDOSOC should be very close to the Chip Pin & the Ground Pad of the capacitor should have direct vias to the Ground Plane underneath.

Figure 18 BUCK layout guidelines

- 7. For USB, it is recommended that the components and their values in the BoM be adhered to.
- 8. It is highly recommended that the two USB differential signals (USB_DP and USB_DN) be routed in parallel with a spacing (say, a) which achieves 90 Ω of differential impedance, 45 Ω for each trace.

Figure 19 Spacing between USB_DP and USB_DM

9. In order to minimize crosstalk between the two USB differential signals (USB_DP and USB_DN) and other signal traces routed close to them, it is recommended that a minimum spacing of 3 x a be maintained for low-speed non-periodic signals and a minimum spacing of 7 x a be maintained for high-speed periodic signals.

Figure 20 Spacing for Low-speed and High-speed signals around USB_DP/USB_DN

- 10. It is recommended that the total trace length of the signals between the RS9116 chip and the USB connector be less than 450mm
- 11. If the USB high-speed signals are routed on the Top layer, best results will be achieved if Layer2 is a Ground plane. Furthermore, there must be only one ground plane under high-speed signals in order to avoid the high-speed signals crossing to another ground plane

Figure 21 USB Signals and the Ground Plane

- 12. Each GND pin must have a separate GND via.
- 13. All decoupling capacitors placement must be as much close as possible to the corresponding power pins, and the trace lengths as short as possible.
- 14. Ensure all power supply traces widths are sufficient enough to carry corresponding currents.
- 15. Add GND copper pour underneath IC/Module in all layers, for better thermal dissipation.

6 RS9116 QMS SoC Storage, Handling and Soldering Conditions

6.1 Recommended Reflow Profile

Note:

The profile shown is based on SAC 305 solder (3% silver, 0.5% copper). We recommend the ALPHA OM-338 lead-free solder paste. This profile is provided mainly for guidance. The total dwell time depends on the thermal mass of the assembled board and the sensitivity of the components on it. The recommended belt speed is 50-60 Cm/Min. A finished module can go through two more reflow processes.

6.2 Baking Instructions

The packages are moisture sensitive (MSL3 grade) and devices must be handled appropriately. After the devices are removed from their vacuum-sealed packs, they should be taken through reflow for board assembly within 168 hours at room conditions or stored at under 10% relative humidity. If these conditions are not met, the devices must be baked before reflow. The recommended baking time is nine hours at 125°C.

0.05

Chip Packages 7

Chip with Package Code QMS 7.1

7.1.1 Package Dimensions

Parameter	Value (LxWxH)	Units
Package Dimensions	7 x 7 x 0.85	mm
Tolerance	±0.1	mm

Table 40 Package Dimensions - QMS

ì

7.1.2 Package Outline

nenenenenemenenener SIDE VIEW

Figure 23 Package Outline - QMS

7.1.3 PCB Landing Pattern

DETAIL A

Figure 24 PCB Landing Pattern - QMS

8 RS9116 QMS SoC Ordering Information

8.1 Chip Packages

Package Code	Package Type, Pins	Dimension, Pitch (mm)	Frequency Band	
QMS	QFN, 84	7 x 7 x 0.85	Single Band (2.4 GHz)	
Table 11 Ohin Backana Ontiona				

Table 41 Chip Package Options

8.2 Ordering Information

Part Number	Wireless and Memory			
Но	sted Connectivity (n-Link)			
RS9116N-SB00-QMS-X00	SBW + BT 5 with internal flash; Rev 1.3 Silicon			
RS9116N-SB00-QMS-B00	SBW + BT 5 with internal flash; Rev 1.4 Silicon			
Embedded Connectivity (WiSeConnect)				
RS9116W-SB00-QMS-X24	SBW + BT 5 with internal flash; Rev 1.3 Silicon; Firmware version: 1.2.24			
RS9116W-SB00-QMS-B24	SBW + BT 5 with internal flash; Rev 1.4 Silicon; Firmware version: 1.2.24			
RS9116W-SB00-QMS-B2A*	SBW + BT 5 with internal flash; Rev 1.4 Silicon; Firmware version: 2.0			
T - I-	La 40 Danit Conductor Continue			

Table 42 Part Ordering Options

Note: SBW: Single Band Wi-Fi (2.4 GHz); DBW: Dual Band Wi-Fi (2.4/5 GHz)

* Contact Silicon Labs for availability.

8.2.1 Device Nomenclature

Figure 25 Device Nomenclature

9 RS9116 QMS SoC Documentation and Support

Silicon Labs offers a set of documents which provide further information required for evaluating, and developing products and applications using RS9116. These documents are available in <u>RS9116 Document Library</u> on the Silicon Labs website. The documents include information related to Software releases, Evaluation Kits, User Guides, Programming Reference Manuals, Application Notes, and others.

For further assistance, you can contact Silicon Labs Technical Support here.

10 RS9116 QMS SoC Revision History

Revision No.	Version No.	Date	Changes
1	1.0	April 2019	Initial version
2	1.0.1	May, 2019	Updated host based schematics. Combined SDIO, SPI & UART host interfaces into one schematic.Combined USB and USB-CDC host interfaces into one schematic
3	1.0.2	May, 2019	 Updated the Antenna Control Pins for WMS. Modified Schematics and Pinout Description.
			 Updated 32 Khz external oscillator specifications
			 Updated the Schematics for UART_RTS and UART_CTS Pin correction.
4	1.0.3	May, 2019	Removed 32KHz XTAL Pins and used UULP GPIO for feeding in the External Clock. Updated the below sections for the same
			Pinout Description.
			Specifications
			Reference Schematics
5	1.0.4	July, 2019	 Corrected the description of 32KHz external clock in Specifications section.
			 Renamed LP_WAKEUP to LP_WAKEUP_IN and changed its description in Pinout section.
			Added host detection details in Detailed description
6	1.0.5	October, 2019	 POC reset control description changed to remove the1.75V –2.15V text. For connectivity SoC, externalPOC_in and reset control is now recommended for any operating voltage.
			• Power consumption Table for 3.3V operation reverted to the correct version for single band chip (same as1.0.3). This was corrupted in 1.0.4 version (got wronglyreplaced with dual-band package table for power consumption at 3.3V
7	1.0.6	November, 2019	Bluetooth ACI specs corrected (earlier version shows under Typ - should have been under "Min")
8	1.0.7	July, 2020	 Added note about voltage applied on external Buck Regulator for Typical Current Consumption at 1.85V.
			Updated 40 MHz clock specifications.
			 Updated LED0 software configuration note for ULP_GPIO_8 under Pin Description.
			 Mentioned need for weak pull up resistor under Pin Description to use Wake-on-Wireless feature on ULP_GPIO_6.
			 Updated "Digital Input Output Signals" to separate readings at 3.3V and 1.8V.
			 Updated Applications section.
			 Updated Wireless Co-Existence modes in Features list.

Revision No.	Version No.	Date	Changes
			 The number of center roles supported by BLE changed from 8 to 6.
			 Added a note under Pin Description regarding functionalities that are available on multiple Pins, and their proper usage. Eg. SLEEP_IND_FROM_DEV
			Updated Generic PCB Layout Guidelines.
			 Updated Power Sequence Diagrams under DC Characteristics for POC_IN and POC_OUT.
			Features list updated.
			Reflow profile diagram updated.
			Updated Typical values for BLE ACI characteristics.
			Updated GPIO pin descriptions.
			 Updated Bluetooth EDR 2 Mbps LP Chain Receiver specification.
			Removed Legacy Bluetooth Tx on LP Chain.
			 Updated WLAN 2.4 GHz 1.85V Transmitter specifications.
9	1.0.8	August, 2020	Updated datasheet to reflect data specific to QFN.
			 Updated Features List, removed redundant information.
			 Updated Applications, and Software Architecture Diagrams.
			 Updated pin descriptions - ULP_GPIO_0 and ULP_GPIO_6.
			 Updated RF Tx and Rx numbers based on latest tests.
			Updated Software section with latest information.
			Rebranded to Silicon Labs.
10	1.0.9	August, 2020	 Updated Device Information with new nomenclature to include Silicon revision, and firmware version.
			 Updated nomenclature in Pinout diagram, and Pin descriptions.
			Updated schematics to include the new nomenclature.
			 SoC Ordering information updated with new OPNs; Device Nomenclature diagram updated.

Table 43 Revision History

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. A "Life Support System" is any product or system intended for military applications, silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadio®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701

http://www.silabs.com