

DATA SHEET

CURRENT SENSOR - LOW TCR

PT series

5%, 2%, 1% sizes 0402/0603/0805/1206/2010/2512

RoHS compliant & Halogen free

YAGEO Phicomp

SCOPE

This specification describes PT series current sensor - low TCR and high power with lead-free terminations made by thick film process.

YAGEO Phicomp

<u>APPLICATIONS</u>

- Converters
- Printer equipment
- Server board
- Telecom
- Consumer electronics
- Car electronics

FEATURES

- AEC-Q200 qualified
- Halogen Free Epoxy
- RoHS compliant
- Reduce environmentally
- High component and equipment reliability
- Non-forbidden material used in products/production
- Low resistances applied to current sensing
- Moisture sensitivity level: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER

Part numbers is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

PT XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7

(I) SIZE

0402 / 0603 / 0805 / 1206 / 2010 / 2512

(2) TOLERANCE

 $F = \pm 1\%$

 $G = \pm 2\%$

 $J = \pm 5\%$

"-"= jumper ordering

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL

07 = 7 inch dia. Reel and standard power

13 = 13 inch dia. Reel and standard power

7W = 7 inch dia. reel and $2 \times$ standard power

3W = 13 inch dia. reel and $2 \times$ standard power

(6) RESISTANCE VALUE

There are 3~5 digits indicated the resistor value. Letter R is decimal point.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for order only ^(Note)

 $0R91 = 910 \text{ m}\Omega$

number Resistance code rule	giodai part Example
0RXXX (25 to 910 mΩ)	$0R025 = 25 \text{ m}\Omega$ $0R1 = 100 \text{ m}\Omega$

Designation of slabel same

ORDERING EXAMPLE

The ordering code of a PT0603 chip resistor, 1/5W, value 0.56 Ω with ±1% tolerance, supplied in 7-inch tape reel is: PT0603FR-7W0R56L.

Note

- I. All our Rchip products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

SERIES

MARKING

PT0402

No marking

-Fig. 4

PT0603

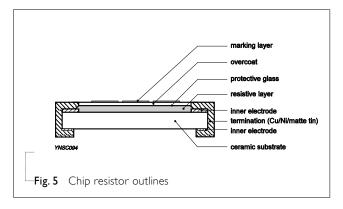
E-24 series / Non-E series (R= 250/400/500 m Ω): 3 digits

Fig. 2 Value = 220 m Ω

The "R" is used as a decimal point; the other 2 digits are significant.

PT0805 / PT1206 / PT2010 / PT2512

E-24 series / Non-E series (R= 250/400/500 m Ω): 4 digits

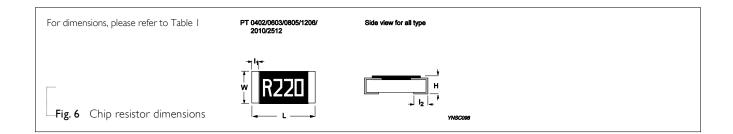

The "R" is used as a decimal point; the other 3 digits are significant.

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximately required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the resistance value. Finally, the three external terminations (Cu/Ni/matte tin) are added, as shown in Fig.5.

OUTLINES


PT

DIMENSIONS

-Table I

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	l ₂ (mm)
PT0402	1.00 ±0.10	0.50 ±0.05	0.35 ±0.05	0.20 ±0.10	0.25 ±0.10
PT0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
PT0805	2.00 ±0.10	1.25 ±0.10	0.55 ±0.10	0.35 ±0.20	0.35 ±0.20
PT1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.45 ±0.20
PT1206(Note)	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.75 ±0.20	0.45 ±0.20
PT2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20
PT2512	6.35 ±0.10	3.20 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20

Note: For resistance range: $75m\Omega \le R < 91m\Omega$

5 9

ELECTRICAL CHARACTERISTICS

Table 2 Type	Power	Operating Temp. range	Max working voltage	Tolerance	Temperature Coe Resistance		Jumper c	riteria		
	1/16W				50 m $\Omega \le R < 68$ m Ω 68 m $\Omega \le R < 100$ m Ω 100 m $\Omega \le R < 1\Omega$	±600ppm/°C ±300ppm/°C ±200ppm/°C	Max, resistance Rated current	10m Ω 3A		
PT0402	I/8 W				-	$50m\Omega < R < 68m$ $68m\Omega \le R < 100m$	$50m\Omega$ $50m\Omega < R < 68m\Omega$ $68m\Omega \le R < 100m\Omega$ $100m\Omega \le R < 1\Omega$	0/+400ppm/°C 0/+350ppm/°C 0/+300ppm/°C ±200ppm/°C		
	1/10W				$50m\Omega$ $< R < 68m\Omega$ $50m\Omega \le R < 100m\Omega$ $100m\Omega \le R < 1\Omega$	0/+400ppm/°C 0/+350ppm/°C 0/+300ppm/°C ±200ppm/°C	Max. resistance Rated current	8m Ω 5A		
PT0603	1/5 W			E24 ± 2%, ± 5% E24/E96 ± 1%	50mΩ 50mΩ < R < 68mΩ 68mΩ	0/+400ppm/°C 0/+350ppm/°C 0/+300ppm/°C ±200ppm/°C				
_	1/3 W	-55°C to +155°C (PxR)^1/2	(PxR)^1/2		$50m\Omega$ $50m\Omega < R < 68m\Omega$ $68m\Omega \le R < 100m\Omega$ $100m\Omega \le R < 1\Omega$	0/+400ppm/°C 0/+350ppm/°C 0/+300ppm/°C				
PT0805	1/8 W	•						0/+350ppm/°C 0/+300ppm/°C	Max. resistance Rated current	5m Ω 6A
F10603	1/4 W			$68m\Omega \le R < 100m\Omega$ $100m\Omega \le R < 1\Omega$	0/+250ppm/°C ±100ppm/°C					
PT1206	1/4 W				$50\text{m}\Omega \leq R \leq 75\text{m}\Omega$	±350ppm/°C	Max. resistance Rated current	5m Ω 10A		
111200	1/2 W	/2 W			$75\text{m}\Omega \le R \le 100\text{m}\Omega$ $100\text{m}\Omega < R < 1\Omega$	±100ppm/°C- ±75ppm/°C				
PT2010	3/4 W					_				
	IW				100 mΩ	±100 ppm/°C_				
PT2512	1W 2W				100 m Ω < R < 1 Ω	±75 ppm/°C -				

РΤ

FOOTPRINT AND SOLDERING PROFILES

YAGEO, Phicomp

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	PT0402	PT0603	PT0805	PT1206	PT2010	PT2512
Paper taping reel (R)	7" (178 mm)	10,000	5,000	5,000	5,000		
	13" (330 mm)	50,000	20,000	20,000	20,000		
Embossed taping reel (K)	7" (178 mm)					4,000	4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C:

PT0402=1/16W, 1/8W

PT0603=1/10W, 1/5W, 1/3W

PT0805=1/8W, 1/4W

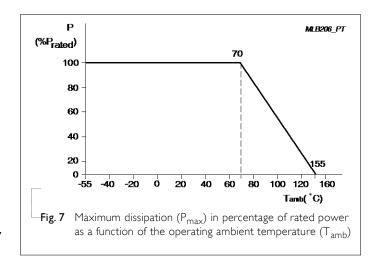
PT1206=1/4W, 1/2W

PT2010=3/4W, IW

PT2512=1W, 2W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

SERI

PT

SERIES **0402/0603/0805/1206/2010/2512**

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of	MIL-STD-202 Method 304	At +25/+125 °C	Refer to table 2
Resistance (T.C.R.)		Formula:	
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t_1 =+25 °C or specified room temperature	
		t ₂ =+125 °C test temperature	
		R _I =resistance at reference temperature in ohms	3
		R ₂ =resistance at test temperature in ohms	
Life/			
Endurance	MIL-STD-202 Method 108A IEC 60115-1 4.25.1	1,000 hours at 70±2 °C applied RCWV 1.5 hours on, 0.5 hour off, still air required	± (1.0%+0.0005 Ω)
High Temperature	MIL-STD-202 Method 108A	1,000 hours at maximum operating temperature	e ± (1.0%+0.0005 Ω)
Exposure	IEC 60068-2-2	depending on specification, unpowered	
		No direct impingement of forced air to the part	S
		Tolerances: I55±3 °C	
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8	3 ± (0.5%+0.0005 Ω)
	7 HE 01 D 202 / Teal 04 100	hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	2 (0.376+0.0003 \$2)
		Parts mounted on test-boards, without condensation on parts	
		Measurement at 24±2 hours after test conclusion	
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C	± (1.0%+0.0005 Ω)
		Number of cycles required is 300. Maximum	± (1.070 · 0.0000 32)
		Devices mounted:	
		transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	

PT

SERIES **0402/0603/0805/1206/2010/2512**

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Short Time Overload	IEC60115-1 4.13	PT standard power: 2.5 times rated voltage for 5 sec at room temperature	\pm (1.0%+0.0005 Ω) No visible damage
		PT high power: 5 times rated power for 5 sec at room temperature	
		PT jumper: 2.5 times rated current for 5 sec at room temperature	
Board Flex/ Bending	IEC 60115-1 4.33	Device mounted on PCB test board as described, only I board bending required	± (1.0%+0.0005 Ω) No visible damage
		Bending for 0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm	Two visione durinage
		Holding time: minimum 60±1 seconds	
		Ohmic value checked during bending	
Solderability			
- Wetting	J-STD-002 test B	Electrical Test not required	Well tinned (≥95% covered)
		Magnification 50X	No visible damage
		SMD conditions:	
		I st step: method B, aging 4 hours at 155 °C dry heat	
		2 nd step: leadfree solder bath at 245±3 °C	
		Dipping time: 3±0.5 seconds	
- Leaching	J-STD-002 test D	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to	IEC 60115-1 4.18	Condition B, no pre-heat of samples.	± (0.5%+0.0005 Ω)
Soldering Heat		Leadfree solder, 260±5 °C, 10±1 seconds	No visible damage
		immersion time	Ü
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	

9

Chip Resistor Surface Mount

SERIES

PT

0402/0603/0805/1206/2010/2512

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 2	Dec. 11, 2015	-	- Update electrical characteristics
Version I	Jul. 02, 2015	-	- Extend resistor value
Version 0	Aug. 21, 2014	-	- New datasheet for current sensor - low TCR PT series sizes of 0402/0603/0805/1206/2010/2512, 1%, 2%, 5% with lead-free termination

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

