KYOCERa ### How to Order #### ■Features - •Kyocera's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications. - •We have a network worldwide in order to supply our global customer bases quickly and efficiently. - •All our products are highly reliable due to their monolithic structure of high-purity and superfine uniform ceramics and their integral internal electrodes. - •Our stringent quality control in every phase of production from material procurement to shipping ensures consistent manufacturing and superior quality. - •Kyocera components are available in a wide choice of dimensions, temperature characteristics, rated voltages, and terminations to meet specific configurational requirements. #### **■KYOCERA PART NUMBER** **OPTION:** Above digits are used to track individual specification or thickness. (Example) : CM Series(General) ①Series ②Size : 0201 ③ Dielectric (4) Capacitance: 2.2 μF (5) Tolerance: ±20% (6) Voltage: 6.3 Vdc (7) Termination: Sn (8) Packaging: Cavity pitch 2mm / Reel Size φ180 #### (1) Series Code | CODE | Туре | |------|------------------------------| | CM | General | | СТ | Low Profile | | CU | High-Q | | AR | Automotive | | KNH | Three Terminal
Capacitors | | | ۰. | _ | | |-----|------|-----|----| | (2) | Size | Cod | le | | _ | | | | | |------|-------|------|--|--| | CODE | EIA | JIS | | | | 02 | 01005 | 0402 | | | | 03 | 0201 | 0603 | | | | 05 | 0402 | 1005 | | | | 105 | 0603 | 1608 | | | | 21 | 0805 | 2012 | | | | 316 | 1206 | 3216 | | | | 32 | 1210 | 3225 | | | #### ③ Dielectric Code | | Temperature Compensation Type | | | | | | |------|-------------------------------|---|-----|--|--|--| | CODE | m/°C | | | | | | | CG | -55 to 125 | 0 | ±30 | | | | | СН | -55 to 125 | 0 | ±60 | | | | - All parts of COG will be marked as "CG" but will conform to the - Temperature coefficients are determined by calculation based on measurement at 20°C and 85°C. | | High Dielectric Constant Type | | | | | | | |------|-------------------------------|---------------|------------------------------|--|--|--|--| | CODE | Temperature
Range (°C) | ∆C (%) | Standard
Temperature (°C) | | | | | | X5R | -55 to 85 | ±15 | | | | | | | X6S | -55 to 105 | ±22 | | | | | | | X6T | -55 10 105 | +22/-33 | 25 | | | | | | X7R | | ±15 | 23 | | | | | | X7S | -55 to 125 | ±22 | | | | | | | X7T | | +22/-33 | | | | | | #### 4 Capacitance Code Capacitance expressed in pF. Two significant digits plus number of zeros. For Values < 10pF, Letter R denotes decimal point, 102=1,000pF=1nF (Example) | CODE | Capacitance | |------|-------------| | R50 | 0.5pF | | 1R0 | 1pF | | 100 | 10pF | | 101 | 100pF | | 102 | 1nF | | 103 | 10nF | | 104 | 100nF | | 105 | 1μF | | 106 | 10µF | | 107 | 100µF | #### (5) Tolerance Code | Temperature Compensation Type (C0G) | | | | | | |-------------------------------------|-----------|--|--|--|--| | CODE | Tolerance | | | | | | A* | ±0.05pF | | | | | | В | ±0.1pF | | | | | | С | ±0.25pF | | | | | | D | ±0.5pF | | | | | | G* | ±2% | | | | | | J | ±5% | | | | | | K | ±10% | | | | | ^{*:} Option | High Dielectric Constant Type | | | | | | | |-------------------------------|---------------------------|--|--|--|--|--| | (X5R/X6 | (X5R/X6S/X6T/X7R/X7S/X7T) | | | | | | | CODE | CODE Tolerance | | | | | | | J* | ±5% | | | | | | | K ±10% | | | | | | | | М | ±20% | | | | | | ^{*:} Option #### 6 Voltage Code | CODE | Rated Voltage | | | | | |------|---------------|--|--|--|--| | 02 | 2.5Vdc | | | | | | 04 | 4Vdc | | | | | | 06 | 6.3Vdc | | | | | | 10 | 10Vdc | | | | | | 16 | 16Vdc | | | | | | 25 | 25Vdc | | | | | | 35 | 35Vdc | | | | | | 50 | 50Vdc | | | | | | 100 | 100Vdc | | | | | | | | | | | | #### 7 Termination Code | CODE | Termination | |---------------------|--------------------------------------| | Α | Nickel Barrier/ Tin | | • Please
is need | contact us if Au termination
led. | #### Packaging Code | CODE | Size Code | Cavity pitch | Reel size | | |------|-----------|--------------|-----------|--| | Т | 105 to 32 | 4mm | | | | Н | 02 to 05 | 2mm | φ180 | | | Q | 03/05 | 1mm | Ψ160 | | | Р | 02 | 1mm | | | | L | 105 to 32 | 4mm | | | | N | 02 to 05 | 2mm | φ330 | | | W | 03/05 | 1mm | | | ### Dimension ### ■CM/CT/CU/AR Series (Two Terminal Capacitors) ## ■Packaging Code | Size | Со | de | Dimension | | Dimension (mm) | | | | | Quantity | per reel | |------|-------|-----------|-----------|----------|----------------|----------------------------|-------------|--------|-------------|------------------------------|-----------------------------| | Size | EIA | JIS | Code | L | W | T | P min. | P max. | P to P min. | φ180 Reel | φ330 Reel | | 02 | 01005 | 0402 | А | 0.4±0.02 | 0.2±0.02 | 0.2±0.02 | 0.07 | 0.14 | 0.13 | 40kp(E4/1)
20kp(P8/2) | -
80kp(P8/2) | | | | | A
B | 0.6±0.03 | 0.3±0.03 | 0.22 max.
0.3±0.03 | 0.1 | 0.2 | 0.2 | 30kp(P8/1)
15kp(P8/2) | 150kp(P8/1)
50kp(P8/2) | | 03 | 0201 | 0603 | С | 0.6±0.05 | 0.3±0.05 | 0.3±0.05 | | | | 13KP(P0/2) | 30KP(P6/2) | | 03 | 0201 | 0603 | D
E | 0.6±0.09 | 0.3±0.09 | 0.22 max.
0.3±0.09 0.13 | 0.13 | 0.23 | 0.19 | 15kp (P8/2) | 50kp(P8/2) | | | | | F | | | 0.5±0.05 | | | | 10kp(P8/2) | _ | | | | | A
B | 1.0±0.05 | 0.5±0.05 | 0.33 max.
0.5±0.05 | | | | 20kp(P8/1)
10kp(P8/2) | 100kp(P8/1)
50kp(P8/2) | | | | | С | 1.0±0.1 | 0.5±0.05 | 0.22 max. | 1 | | | 10kp(P8/2) | 50kp(P8/2) | | | | | D | 1.0±0.15 | 0.5±0.15 | 0.5±0.15 | 1 | 0.35 | 0.3 | 10kp (P8/2) | 40kp(P8/2) | | 05 | 0402 | 1005 | Е | | | 0.33 max. | 0.15 | | | 10kp(P8/2) | ·- | | | | | F | 1.0±0.2 | 0.5±0.2 | 0.5 max. | | | | 10kp (P8/2) | 50kp (P8/2) | | | | | G | | | 0.55 max. | | | | | | | | | | Н | | | 0.5±0.2 | | | | 10kp (P8/2) | 40kp(P8/2) | | | | | J | | | 0.8 max. | | | | 10kp (P8/2) | 30kp (P8/2) | | | | | A | 1.6±0.1 | 0.8±0.1 | 0.55 max. | 0.2 0.6 0.5 | | | | 1 | | 105 | 0603 | 1608 | В | | | 0.8±0.1 | | 0.2 0. | 0.6 | 0.6 0.5 | 4kp(P8/4) | | | | | С | 1.6±0.15 | 0.8±0.15 | 0.8±0.15 | | | | | | | | | | D | 1.6±0.2 | 0.8±0.2 | 0.8±0.2 | | | | 21(50.44) | 101(50/4) | | | | | A | 2.0±0.1 | 1.25±0.1 | 1.25±0.1 | | | | 3kp (E8/4) | 10kp (E8/4) | | 21 | 0805 | 0805 2012 | B
C | 2.0±0.15 | 1.25±0.15 | 0.95 max.
0.95 max. | 0.2 | 0.75 | .75 0.7 | 4kp(P8/4) 10kp(P8/4) | 10kp(P8/4) | | | | | D | 2.0±0.2 | 1.25±0.2 | 1.25±0.2 | | | | 3kp (E8/4) | 10kp (E8/4) | | | | | A | 3.2±0.2 | 1.6±0.2 | 0.95 max. | | | | 4kp(P8/4) | — TOKP(LO/4) | | | | | В | | 1.6±0.15 | 1.6±0.15 | 0.3 | 0.85 | 1.4 | | | | 316 | 1206 | 3216 | C | 3.2±0.2 | 1.6±0.2 | 1.6±0.2 | 3.5 | 0.05 | | 2.5kp (E8/4) | 5kp (E8/4) | | | | | D | 3.2±0.3 | 1.6±0.3 | 1.6±0.3 | 0.3 | 0.85 | 1.9 | 2kp (E8/4) | _ | | 32 | 1210 | 3225 | Α | 3.2±0.3 | 2.5±0.2 | 2.5±0.2 | 0.3 | 1.0 | 1.4 | 1kp(E8/4) | 4kp(E8/4) | ### ■KNH Series (Three Terminal Capacitors) | Size | Со | de | Dimension | | | Packaging | | | | | | | |------|------|------|-----------|----------|----------|-----------|----------|----------|-------|------------|-----------|--| | Size | EIA | JIS | Code | L | W | T | G | Р | R | φ180 Reel | φ330 Reel | | | KNH | | | | Α | 1.0±0.1 | 0.5±0.2 | 0.5 max. | | | | | | | 05 | 0402 | 1005 | В | 1.0±0.15 | 0.5±0.15 | 0.5±0.15 | 0.3±0.1 | 0.15±0.1 | ≧0.05 | 10kp(P8/2) | _ | | | 05 | | | С | 1.0±0.2 | 0.5±0.2 | 0.5±0.2 | | | | | | | Three Terminal Capacitors KNH Series #### **■**Features 0402 Size. Rated current up to 2A MAX. With unique circuit structure, this three terminal capacitor enables noise reduction in wide fequency range. With its high capacitance, it is possible to reduce the number of components being used. #### ■Applications •Decoupling applications of power supply lines around high-speed operating processors such as smartphones, tablets, and wearable #### X5R Dielectric •Capacitance chart Standard Spec.2 | (EIA | | (NH05
(0402) | | |---------|--------|-----------------|---| | Rated ' | | 4 | | | 105 | 1 μF | Г | | | 435 | 4.3 µF | Г | Α | | 106 | 10 µF | | C | | 156 | 15 µF | Г | В | Please contact for capacitance value other than standard. Please refer to here for the test method and specifications of Standard Specification 2. Alphabets in capacitance chart denote dimensions. Please refer to the below table for detail. (Example) In case of "A" for KNH05; L: 1.0±0.1mm, W: 0.5±0.2mm, T: 0.5mm max. | | | | | Dimensi | on (mm) | | | Packaging | | | | | | |------|-----------|----------|----------|-------------|--------------|----------|-------|-----------|--------------------|--------------------|-------------------------|-------------------|--| | | Dimension | | | Difficition | OII (IIIIII) | | | φ180 Reel | | | | | | | Size | Code | L | W | Т | G | Р | R | Code | Quantity
(pcs.) | Taping
Material | Taping
Width
(mm) | Cavity Pitch (mm) | | | KNH | Α | 1.0±0.1 | 0.5±0.2 | 0.5 max. | 0.3±0.1 | 0.15±0.1 | ≥0.05 | Н | 10,000 | Paper | 8 | 2 | | | 05 | В | 1.0±0.15 | 0.5±0.15 | 0.5±0.15 | 0.3±0.1 | 0.15±0.1 | ≥0.05 | Н | 10,000 | Paper | 8 | 2 | | | 03 | С | 1.0±0.2 | 0.5±0.2 | 0.5±0.2 | 0.3±0.1 | 0.15±0.1 | ≥0.05 | Н | 10,000 | Paper | 8 | 2 | | #### X6S Dielectric Capacitance chart Standard Spec.2 Optional Spec. | Size
(EIA Code) | KNH05
(0402) | | | | |--------------------------------|-----------------|---|--|--| | Rated Voltage(Vdc) Capacitance | 2.5 | 4 | | | | 105 1 μF | | | | | | 435 4.3 μF | Α | Α | | | | 106 10 μF | 2 C 2 | | | | | 156 15 µF | | | | | Please contact for capacitance value other than standard. Please refer to $\frac{1}{\text{here}}$ for the test method and specifications of Standard Specification 2. Alphabets in capacitance chart denote dimensions. Please refer to the below table for detail. (Example) In case of "A" for KNH05; L: 1.0±0.1mm, W: 0.5±0.2mm, T: 0.5mm max. | | | | | Dimonsi | on (mm) | | | Packaging | | | | | |------|-----------|---------|---------|-----------|--------------|----------|-----------|-----------|--------------------|--------------------|-------------------------|-------------------| | | Dimension | | | Difficits | OII (IIIIII) | | φ180 Reel | | | | | | | Size | Code | L | W | Т | G | Р | R | Code | Quantity
(pcs.) | Taping
Material | Taping
Width
(mm) | Cavity Pitch (mm) | | KNH | Α | 1.0±0.1 | 0.5±0.2 | 0.5 max. | 0.3±0.1 | 0.15±0.1 | ≥0.05 | Н | 10,000 | Paper | 8 | 2 | | 05 | С | 1.0±0.2 | 0.5±0.2 | 0.5±0.2 | 0.3±0.1 | 0.15±0.1 | ≥0.05 | Н | 10,000 | Paper | 8 | 2 | # **■**Dimension (Unit: mm) T IN/ OUT GND IN/ OUT ### Test Conditions and Standards Test Conditions and Specifications for High Dielectric Type (X5R, X6S) KNH Series (Standard Spec.2) | Test | Items | Test Conditions (Complies with JIS C5101) | Specifications | |-----------------------------|--------------------------|---|--| | Capacitance Value (C) | | Measure after heat treatment Capacitance Frequency Volt C≤10μF 1kHz±10% 1.0±0.2Vrms *1kHz±10% 0.5±0.2Vrms 0.5±0.2Vrms C>10μF 120Hz±10% 0.5±0.2Vrms | Within tolerance | | Insulation Resis | tance (IR) | The charge and discharge current of the capacitor must not exceed 50mA. Apply the rated voltage for 1minute, and measure it in normal temperature and humidity. The charge and discharge current of the capacitor must not exceed 50mA. | Over 50MΩ•μF | | Direct current re | esistance | | 0.03Ω max. | | Rated current | | | 2A(DC) | | Dielectric Resist | ance | Apply 2.5 times of the rated voltage for 1 to 5 seconds. The charge and discharge current of the capacitor must not exceed 50mA. | No problem observed | | Appearance | | Microscope | No problem observed | | Bending Streng | th | Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds. | No significant damage with 1mm bending | | Vibration
Test | Appearance | Take the initial value after heat treatment. Vibration frequency: 10 to 55 (Hz) Amplitude: 1.5mm | No problem observed | | | Capacitance | Sweeping condition: 10→55→10Hz/ 1 minute in X, Y and Z directions: 2 hours each, 6 hours in total, and place in normal temperature and humidity, then measure the sample after heat treatment. | Within tolerance | | Soldering Heat
Resistant | Appearance | Take the initial value after heat treatment.
Soak the sample in 260°C±5°C solder for 10±0.5 seconds and place in nor- | No problem observed | | | Capacitance
Variation | mal temperature and humidity, and measure after heat treatment. (Pre-heating conditions) | Within±30.0% | | | IR | Order Temperature Time 1 80 to 100°C 2 minutes 2 150 to 200°C 2 minutes | Over 50MΩ•μF | | | Withstanding
Voltage | The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement. | Resist without problem | | Solderablity | | Soaking condition Sn-3Ag-0.5Cu 245±5°C 3±0.5 sec. Sn63 Solder 235±5°C 2±0.5 sec. | Solder coverage : 95% min. | | Temperature
Cycle | Appearance | Take the initial value after heat treatment.
(Cycle) | No problem observed | | | Capacitance
Variation | Room temperature (3 min.)→
Lowest operation temperature (30 min.)→ | Within±30.0% | | | IR | Room temperature (3 min.)→
Highest operation temperature(30 min.)
After 5 cycles, measure after heat treatment. | Over 50MΩ•μF | | | Withstanding
Voltage | The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement. | Resist without problem | | Moisture
Resistant Load | Appearance | Take the initial value after heat treatment. After applying rated voltage for 500+12/ –0 hours in the condition of | No problem observed | | | Capacitance
Variation | 40°C±2°C and 90 to 95%RH, and place in normal temperature and humidity, then measure the sample after heat treatment. | Within±30.0% | | | IR | The charge and discharge current of the capacitor must not exceed 50mA for IR measurement. | Over 10MΩ•μF | | High-
Temperature | Appearance | Take the initial value after heat treatment. After applying 1.0 times the rated voltage at the highest operation | No problem observed | | Load | Capacitance
Variation | temperature for 1000+12/ –0 hours, and measure the sample after heat treatment in normal temperature and humidity. | Within±30.0% | | | IR | The charge and discharge current of the capacitor must not exceed 50mA for IR measurement. | Over 10MΩ•μF | | | | Expose sample in the temperature of 150+0/ =10°C for 1 hour and leave | a the consulation and terms and | | | Heat treatment | Expose sample in the temperature of $150+0/-10$ °C for 1 hour and leave the sample in normal temperature and | |--------------|----------------|--| | neat treatme | Heat treatment | humidity for 24±2 hours. | ### Test Conditions and Standards Substrate for Adhesion Strength Test, Vibration Test, Soldering Heat Resistance Test, Temperature Cycle Test, Load Humidity Test, High-Temperature with Loading Test. (Unit: mm) | Size
(EIA Code) | a | b | С | |--------------------|------|------|------| | 02 (01005) | 0.15 | 0.5 | 0.2 | | 03 (0201) | 0.26 | 0.92 | 0.32 | | 05 (0402) | 0.4 | 1.4 | 0.5 | | 105 (0603) | 1.0 | 3.0 | 1.2 | | 21 (0805) | 1.2 | 4.0 | 1.65 | | 316 (1206) | 2.2 | 5.0 | 2.0 | | 32 (1210) | 2.2 | 5.0 | 2.9 | ### Substrate for Bending Test (Unit: mm) * 02, 03, 05 size 0.8±0.1mm ### Structure #### **■**Certification status <ISO> Acquired ISO 9001 quality management system certification. <IATF> Acquired IATF 16949 quality management system certification. ### ■Production plant Kagoshima kokubu plant ### **KYOCERa** (Unit: mm) ### Packaging Options Tape and Reel | Reel | Α | В | С | D | | |---------------------------------|---------|------------|-----------|--------|--| | 7-inch Reel
(CODE: T, H, Q) | 180 +0 | | | | | | 7-inch Reel
(CODE: P) | 1/8+20 | | 13±0.5 | 21±0.8 | | | 13-inch Reel
(CODE: L, N, W) | 330±2.0 | | | | | | Code
Reel | E | W 1 | W2 | R | | | 7-inch Reel
(CODE: T, H, Q) | | 10.5±1.5 | 16.5 max. | | | | 7-inch Reel
(CODE: P) | 2.0±0.5 | 4.35±0.3 | 6.95±1.0 | 1.0 | | | 13-inch Reel
(CODE: L, N, W) | | 9.5±1.0 | 16.5 max. | | | **Carrier Tape** (Unit: mm) F=1mm (02 Size) F=2mm (02, 03, 05 Size) F=1mm (03, 05 Size) F=4mm (105, 21, 316, 32 Size) (Unit: mm) | Size | | | С | D | Е | F | G | н | 1 | Carrier Tape | | | |-------------|-----------|------------------|--------------|----------------|----------|-----------|-------------------------------|----------|------------|--------------|----------|--| | (EIA Code) | ^ | В | | D | | | l G | П | , | Width | Material | | | 02 (01005)* | 0.24±0.02 | 0.44±0.02 | 4.0±0.08 | 1.8±0.02 | 0.9±0.05 | 1.0±0.02 | | 2.0±0.04 | 0.8±0.04 | 4 | Plastic | | | 02 (01003) | 0.25±0.03 | 0.45±0.03 | 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 2.0±0.05 | _ | 4.0±0.1 | 1.5+0.1/-0 | 8 | Paper | | | | 0.37±0.03 | 0.67±0.03 | 8.0+0.3/-0.1 | 3.5±0.05 | 1.75±0.1 | 1.0±0.05 | | 4.0±0.05 | 1.5+0.1/-0 | | | | | | 0.37±0.03 | 0.07 ± 0.03 | 8.0±0.3 | 3.3±0.03 | 1.75±0.1 | 2.0±0.05 | _ | 4.0±0.1 | 1.5+0.1/-0 |] | | | | 03 (0201)* | 0.39±0.03 | 0.69±0.03 | 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 2.0±0.05 | _ | 4.0±0.1 | 1.5+0.1/-0 | | Paper | | | | 0.42±0.03 | 0.72±0.03 | 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 2.0±0.05 | _ | 4.0±0.1 | 1.5+0.1/-0 | | | | | | 0.44±0.05 | 0.74±0.05 | 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 2.0±0.05 | _ | 4.0±0.1 | 1.5+0.1/-0 | | | | | | 0.65±0.1 | 0.65+0.1 | | 8.0+0.3/-0.1 | | | 1.0±0.05 | _ | 4.0±0.05 | | | | | 05 (0402)* | | 1.15±0.1 8.0±0.3 | 9.0+0.2 | 3.5 ± 0.05 | 1.75±0.1 | 2.0±0.05 | | 4.0±0.1 | 1.5+0.1/-0 | 8 | Paper | | | 03 (0402) | 0.75±0.1 | | 0.0±0.5 | | | 2.0±0.03 | | 4.0±0.1 | |] ° | rapei | | | | 0.8±0.1 | 1.3±0.1 | 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 2.0±0.05 | _ | 4.0±0.1 | 1.5+0.1/-0 | | | | | 105 (0603)* | 1.0±0.2 | 1.8±0.2 | 8.0±0.3 | 3.5 ± 0.05 | 1.75±0.1 | 4.0±0.1 | 2.0±0.05 | 4.0±0.1 | 1.5+0.1/-0 | 8 | Paper | | | 103 (0003) | 1.1±0.2 | 1.9±0.2 | 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 4.0±0.1 | 2.0±0.05 | 4.0±0.1 | 1.5+0.1/-0 | 0 | Гареі | | | 21 (0805) | 1.5±0.2 | 2.3±0.2 | 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 4.0±0.1 | 2.0±0.05 | 4.0±0.1 | 1.5+0.1/-0 | 8 | Paper | | | 21 (0003) | 1.5±0.2 | 2.3±0.2 | 0.0±0.5 | 3.3±0.03 | 1.73±0.1 | 4.0±0.1 | 2.0±0.03 | 4.0±0.1 | 1.5+0.1/-0 | 8 | Plastic | | | 316 (1206) | 2.0±0.2 | 2.0±0.2 3.6±0.2 | 2 8.0±0.3 | 3.5±0.05 | 1.75±0.1 | 4.0±0.1 | 2.0±0.05 | 4.0±0.1 | 1.5+0.1/-0 | 8 | Paper | | | 310 (1200) | 2.U±U.2 | 3.0±0.2 | 0.0±0.5 | 3.3±0.03 | 1.73±0.1 | 4.0 = 0.1 | 2.0±0.05 4.0±0.1 1.5+0.1/ | | 1.5+0.1/-0 | 8 | | | | 32 (1210) | 2.9±0.2 | 3.6±0.2 | 8.0±0.3 | 3.5 ± 0.05 | 1.75±0.1 | 4.0±0.1 | 2.0±0.05 | 4.0±0.1 | 1.5+0.1/-0 | 8 | Plastic | | ^{*} Option ### **Packaging Options** #### Detail of leader and trailer #### Adhesive tape - 1) The exfoliative strength when peeling off the top tape from the carrier tape by the method of the following figure shall be *0.1 to 0.7N. *02 Size: 0.1 to 0.5N - 2) When the top tape is peeled off, the adhesive stays on the top tape. - 3) Chip capacitors will be in a state free without being stuck on the thermal adhesive tape. ### Carrier tape - 1) Chip will not fall off from carrier tape or carrier tape will not be damaged by bending than within a radius of 25mm. - 2) The chip are inserted continuously without any empty pocket. - 3) Chip will not be mis-mounted because of too big clearance between components and cavity. Also the waste of carrier tape will not fill a nozzle hole of mounting machine. ### Surface Mounting Information ### Dimensions for recommended typical land Since the amount of solder (size of fillet) to be used has direct influence on the capacitor after mounting, the sufficient consideration is necessary. When the amounts of solder is too much, the stress that a capacitor receives becomes larger. It may become the cause of a crack in the capacitor. When the land design of printed wiring board is considered, it is necessary to set up the form and size of land pattern so that the amount of solder is suitable. ### **Two Terminal Capacitors** (Unit: mm) | | Size | Dime | nsion | Recommended land dimensions | | | | | |---|------------|----------|---------------|-----------------------------|--------------|--------------|--|--| | | (EIA Code) | L | W | а | b | С | | | | ĺ | 02 (01005) | 0.4±0.02 | 0.2±0.02 | 0.13 to 0.2 | 0.12 to 0.18 | 0.2 to 0.23 | | | | | | 0.6±0.03 | 0.3±0.03 | 0.2 to 0.25 | 0.25 to 0.35 | 0.2 += 0.4 | | | | | 03 (0201) | 0.6±0.05 | 0.3±0.05 | 0.2 10 0.25 | 0.25 (0 0.35 | 0.3 to 0.4 | | | | | | 0.6±0.09 | 0.3±0.09 | 0.23 to 0.3 | 0.25 to 0.35 | 0.3 to 0.45 | | | | | | 1.0±0.05 | 0.5±0.05 | 0.3 to 0.5 | 0.35 to 0.45 | 0.4 to 0.6 | | | | | 05 (0402) | 1.0±0.15 | 0.5±0.15 | 0.4 to 0.6 | 0.4 to 0.5 | 0.5 to 0.75 | | | | | | 1.0±0.2 | 0.5±0.2 | 0.4 10 0.6 | 0.4 (0 0.5 | | | | | | | 1.6±0.1 | 0.8±0.1 | 0.7 to 1.0 | 0.8 to 1.0 | 0.6 to 0.9 | | | | | 105 (0603) | 1.6±0.15 | 0.8±0.15 | | | | | | | | 103 (0003) | 1.6±0.2 | 0.8 ± 0.2 | 0.8 to 1.0 | 0.8 to 1.0 | 0.8 to 1.1 | | | | | | 1.6±0.25 | 0.8±0.25 | | | | | | | | | 2.0±0.1 | 1.25±0.1 | 1.0 to 1.3 | 1.0 to 1.2 | 1.0 to 1.45 | | | | | 21 (0805) | 2.0±0.15 | 1.25±0.15 | 1.0 to 1.3 | 1.0 to 1.2 | 1.25 to 1.55 | | | | | | 2.0±0.2 | 1.25±0.2 | 1.0 to 1.3 | 1.0 to 1.2 | 1.23 (0 1.33 | | | | | | 3.2±0.2 | 1.6±0.15 | 2.1 to 2.5 | 1.1 to 1.3 | 1.4 to 1.9 | | | | | 316 (1206) | 3.2±0.2 | 1.6±0.2 | 2.1 to 2.5 | 1.1 to 1.3 | 1.6 to 2.0 | | | | | | 3.2±0.3 | 1.6±0.3 | 2.1 (0 2.3 | 1.1 (0 1.5 | 1.0 (0 2.0 | | | | | 32 (1210) | 3.2±0.3 | 2.5±0.2 | 2.1 to 2.5 | 1.1 to 1.3 | 1.9 to 2.8 | | | ^{*} Recommended land dimensions may differ depending on dimensional tolerance. ### Design of printed circuit and Soldering The recommended fillet height shall be 1/2 of the thickness of capacitors or 0.5mm. When mounting two or more capacitors in the common land, it is necessary to separate the land with the solder resist strike so that it may become the exclusive land of each capacitor. ### Ideal Solder Height | Item | Prohibited | Recommended example : Separation by solder resist | | | |----------------------------------|---------------------|---|--|--| | Multiple parts mount | | Solder resist | | | | Mount with
leaded parts | Leaded parts | Solder resist Leaded parts | | | | Wire soldering
after mounting | Soldering iron Wire | Solder resist | | | | Side by side layout | Solder resist | Solder resist | | | ### Surface Mounting Information #### Mounting Design The chip could crack if the PCB warps during processing after the chip has been soldered. #### Recommended chip position on PCB to minimize stress from PCB warpage #### **Actual Mounting** - 1) If the position of the vacuum nozzle is too low, a large force may be applied to the chip capacitor during mounting, resulting in cracking. - 2) During mounting, set the nozzle pressure to a static load of 1 to 3 N. - 3) To minimize the shock of the vaccum nozzle, provide a support pin on the back of the PCB to minimize PCB flexture. - 4) Bottom position of pick up nozzle should be adjusted to the top surface of a substrate which camber is corrected. #### Resin Mold - 1) If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin. - 2) The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin. - 3) Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself. ### Surface Mounting Information #### Soldering Method - 1) Ceramic is easily damaged by rapid heating or cooling. If some heat shock is unavoidable, preheat enough to limit the temperature difference (Delta T) to within 150 degree Celsius. - 2) The product size 1.6×0.8mm to 3.2×1.6mm can be used in reflow and wave soldering, and the product size of bigger than 3.2×1.6mm, or smaller than 1.6×0.8mm can be used in reflow. - Circuit shortage and smoking can be created by using capacitors which are used neglecting the above caution. - 3) Please see our recommended soldering conditions. - 4) In case of using Sn-Zn Solder, please contact us in advance. - 5) The following condition is recommended for spot heater application. - Recommended spot heater condition | Item | Condition | | | | | |------------------|---|--|--|--|--| | Distance | 5mm min. | | | | | | Angle | 45° | | | | | | Projection Temp. | 400°C max. | | | | | | Flow rate | Set at the minimum | | | | | | Nozzle diameter | 2φ to 4φ (Single hole type) | | | | | | Application time | 10 sec. max. (1206 and smaller)
30 sec. max. (1210 and larger) | | | | | ### **KYOCERa** ### **Precautions** #### Circuit Design - 1. Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance which are provided in both the catalog and the specifications. Use exceeding that which is specified may result in inferior performance or cause a short, open, smoking, or flaming to occur, etc. - 2. Please consult the manufacturer in advance when the capacitor is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highly public orientated; and devices which demand a high standard of liability. Accident or malfunction of devices such as medical devices, space equipment and devices having to do with Accident or malfunction of devices such as medical devices, space equipment and devices having to do with atomic power could generate grave consequence with respect to human lives or, possibly, a portion of the public. Capacitors used in these devices may require high reliability design different from that of general purpose capacitors. 3. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed therethrough. As this effect becomes especially pronounced in high frequency circuits, please exercise caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rises remain below 20°C. - 4. Please keep voltage under the rated voltage which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage. In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage. Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding - 5. When the capacitor is to be employed in a circuit in which there is continuous application of a high frequency voltage or a steep pulse voltage, even though it is within the rated voltage, please inquire to the manufacturer. In the situation the capacitor is to be employed using a high frequency AC voltage or a extremely fast rising pulse voltage, even though it is within the rated voltage, it is possible capacitor reliability will deteriorate. voltage or, in worst case situations, may cause the capacitor to smoke or flame. - 6. It is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage. Due caution is necessary as the degree of deterioration varies depending on the quality of capacitor materials, capacity, as well as the load voltage at the time of operation. - 7. Do not use the capacitor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications. In addition, it is a common piezo phenomenon of high dielectric products to have some voltage due to vibration or to have noise due to voltage change. Please contact sales in such case. - 8. If the electrostatic capacity value of the delivered capacitor is within the specified tolerance, please consider this when designing the respective product in order that the assembled product function appropriately. - 9. Please contact us upon using conductive adhesives. #### Storage Please note the following regarding the storage of delivered products. - 1. Set the storage temperature to + 5 to + 40 $^{\circ}$ C and humidity to 20 ~ 70% RH. Other meteorological conditions are in accordance with classification 1 K2 of JIS C 60721 -3 -1. - 2. Store in a place where corrosive gas (H₂S, SO₂, NO₂, Cl₂, etc.) does not exist in the atmosphere. Also, avoid exposure to salty moisture. In either case, this may cause oxidation corrosion of the terminal electrode, reducing solderability. If you store the above delivered products according to the conditions listed above, it will satisfy the solderability standard for 6 months from the shipping date. Safety application guideline and detailed information of electrical properties are also provided in kyocera web site; URL: https://ele.kyocera.com/en/product/capacitor/ Part Number List Three Terminal Capacitors KNH05 Series Size (JIS Code): 0402(1005) Packaging Code (Packaging quantity): H(10,000pcs.) | Dielectric code | Capacitance | □:Tolerance | Voltage
[V] | Part Number | Tanδ
[%] | Dimension | | | Packaging Code | |-----------------|-------------|--------------|----------------|------------------|----------------------|-----------|----------|----------|----------------| | | | | | | | L[mm] | W[mm] | T[mm] | (quantity) | | X5R | 4.3µF | M:±20% | 4 | KNH05X5R435M04AH | _ | 1.0±0.1 | 0.5±0.2 | 0.5 max. | Н | | | 10μF | | | KNH05X5R106M04AH | | 1.0±0.2 | 0.5±0.2 | 0.5±0.2 | Н | | | 15µF | | | KNH05X5R156M04AH | | 1.0±0.15 | 0.5±0.15 | 0.5±0.15 | Н | | X6S | 4.3µF | M:±20% 4 2.5 | 4 | KNH05X6S435M04AH | | 1.0±0.1 | 0.5±0.2 | 0.5 max. | Н | | | | | 1 75 - | KNH05X6S435M02AH | | 1.0±0.1 | 0.5±0.2 | 0.5 max. | Н | | | 10µF | | | KNH05X6S106M02AH |] | 1.0±0.2 | 0.5±0.2 | 0.5±0.2 | Н | ### Notes for Using the Catalog - 1. Specifications described in this catalog are for references. Products specifications shall be based on written documents agreed by each party. - 2. Contents in this catalog are subject to change without notice. It is recommended to confirm the latest information at the time of usage. Also, Kyocera Electronic Components Catalog is revised once a year. We may not be able to accept requests based on old catalogs. - 3. Products in this catalog are intended to be used in general electronic equipment such as office equipment, audio and visual equipment, communication equipment, measurement instrument and home appliances. It is absolutely recommended to consult with our sales representatives in advance upon planning to use our products in applications which require extremely high quality and reliability such as aircraft and aerospace equipment, traffic systems, safety systems, power plant and medical equipment including life maintenance systems. - 4. Even though we strive for improvements of quality and reliability of products, it is requested to design with enough safety margin in equipment or systems in order not to threaten human lives directly or damage human bodies or properties by an accidental result of products. - 5. It is requested to design based on guaranteed specifications for such as maximum ratings, operating voltage and operating temperature. It is not the scope of our guarantee for unsatisfactory results due to misuse or inadequate usage of products in the catalog. - 6. Operation summaries and circuit examples in this catalog are intended to explain typical operation and usage of the product. It is recommended to perform circuit and assembly design considering surrounding conditions upon using products in this catalog. - 7. Technical information described in this catalog is meant to explain typical operations and applications of products, and it is not intended to guarantee or license intellectual properties or other industrial rights of the third party or Kyocera. - 8. Trademarks, logos and brand names used in this catalog are owned by Kyocera or the corresponding third party. - 9. Certain products in this catalog are subject to the Foreign Exchange and Foreign Trade Control Act of Japan, and require the license from Japanese Government upon exporting the restricted products and technical information under the law. Besides, it is requested not to use products and technical information in the catalog for the development and/or manufacture of weapons of mass destruction or other conventional weapons, nor to provide them to any third party with the possibility of having such purposes. - 10. It is prohibited to reprint and reproduce a part or whole of this catalog without permission. - 11. Contents described herein are as of October 2022.