

Aluminum electrolytic capacitors

Single-ended capacitors

Series/Type: B41896 Date: November 2012

© EPCOS AG 2012. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Single-ended capacitors

Up to 135 °C

Long-life grade capacitors

Applications

Automotive electronics

Features

- Very long useful life
- High operating temperature capability up to 135 °C
- High ripple current capability
- Low ESR
- RoHS-compatible

Construction

- Radial leads
- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Minus pole marking on the insulating sleeve
- Case with safety vent

Delivery mode

Terminal configurations and packing:

- Bulk
- Taped, Ammo pack
- Cut
- Kinked
- PAPR (protection against polarity reversal): crimped leads, J leads, bent leads

Refer to chapter "Single-ended capacitors – Taping, packing and lead configurations" for further details.

B41896

Up to 135 °C

Specifications and characteristics in brief

Rated voltage V_R 10 50 V DCSurge voltage V_S 1.15 · V_R Rated capacitance C_R 180 10000 µFCapacitance tolerance $\pm 20\% \triangleq M$ Dissipation factor tan δ For capacitance higher than 1000 µF add 0.02 for every increase of(20 °C, 120 Hz) $V_R(V DC)$ 1016 253550tan δ (max.)0.200.170.120.10Leakage current I_{leak} $0.01 \ \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ or 3 µA, whichever is greaterSelf-inductance ESLDiameter (mm) ≤ 12.5 Diameter (mm) ≤ 12.5 16Useful life ¹¹ 2026125 °C; V_R ; $I_{AC,R}$ > 3500 h for d = 10 mm> 7000 h for d ≥ 12.5 mm3400 h for d ≥ 12.5 mm135 °C; V_R ; $0.75 \cdot I_{AC,R}$ > 1000 h for d = 10 mm> 3000 h for d ≥ 12.5 mm $\Delta C/C \leq \pm 35\%$ of initial valuetan $\delta \leq 3$ times initial specified limit $I_{leak} \leq$ initial specified limit $I_{leak} \leq$ initial specified limit $I_{leak} \leq 10 \text{ mm}$ Post test requirements $\Delta C/C \leq \pm 30\%$ of initial valuetan $\delta \leq 2$ times initial specified limit $I_{leak} \leq$ initial specified limit <tr<< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<<>														
Rated capacitance CR Capacitance tolerance180 10000 µF ±20% \triangleq MDissipation factor tan δ (20 °C, 120 Hz)For capacitance higher than 1000 µF add 0.02 for every increase of 1000 µF.VR (V DC)1016 2535(20 °C, 120 Hz) $V_R (V DC)$ 1016 25Leakage current Ileak (20 °C, 5 min) $I_{leak} = 0.01 \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ or 3 µA, whichever is greaterSelf-inductance ESLDiameter (mm)≤ 12.516Diameter (mm)≤ 12.51618ESL (nH)202634Useful life ¹⁰ > 3500 h for d = 10 mm > 7000 h for d ≥ 12.5 mm135 °C; V _R ; 0.75 · I _{AC,R} > 3500 h for d = 10 mm > 3000 h for d ≥ 12.5 mmRequirements $\Delta C/C \leq \pm 35\%$ of initial value tan $\delta \leq 3$ times initial specified limit $I_{leak} \leq $ initial specified limitVoltage endurance test 125 °C, V _R 3500 h for d = 10 mm > 3000 h for d ≥ 12.5 mmPost test requirements $\Delta C/C \leq \pm 35\%$ of initial value tan $\delta \leq 3$ times initial specified limit $I_{leak} \leq $ initial specified limitVoltage endurance test 125 °C, V _R To IEC 60068-26, test FC: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g, duration $3 \times 2 h$. Capacitor rigidly clamped by the aluminum case.EEC climatic categoryTo IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)	Rated voltage V _R	10 50 \	V DC											
$\begin{array}{c c} \mbox{Capacitance tolerance} & \pm 20\% \triangleq M \\ \hline \mbox{Dissipation factor tan δ} \\ \mbox{(20 °C, 120 Hz)} & \mbox{For capacitance higher than 1000 μF add 0.02 for every increase of 1000 μF.} \\ \hline \mbox{V}_R(V DC) & 10 & 16 \dots 25 & 35 & 50 \\ \hline \mbox{tan δ (max.)} & 0.20 & 0.17 & 0.12 & 0.10 \\ \hline \mbox{Leakage current } I_{leak} \\ \mbox{(20 °C, 5 min)} & \mbox{I}_{leak} = 0.01 μA \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ or 3 μA, whichever is greater \\ \hline \mbox{Self-inductance ESL} & \mbox{Diameter (mm)} & \leq 12.5 & 16 & 18 \\ \hline \mbox{ESL (nH)} & 20 & 26 & 34 \\ \hline \mbox{Useful life}^{11} \\ \mbox{125 °C; V}_{Ri}; 0.75 \cdot I_{AC,R} & > 3500 h for $d = 10$ mm \\ > 7000 h for $d \geq 12.5$ mm \\ \hline \mbox{135 °C; V}_{Ri}; 0.75 \cdot I_{AC,R} & > 1000 h for $d = 10$ mm \\ > 3000 h for $d \geq 12.5$ mm \\ \hline \mbox{Requirements} & \mbox{$\Delta C/C$ C $ \pm 35\%$ of initial value \\ \hline \mbox{tan δ $ \leq 3$ times initial specified limit \\ \hline \mbox{leak} & \leq 3$ times initial specified limit \\ \hline \mbox{Voltage endurance test} \\ \mbox{125 °C, V}_R & 3500 h for $d = 10$ mm \\ \hline \mbox{7000 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d = 10$ mm \\ \hline \mbox{7000 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d = 10$ mm \\ \hline \mbox{7000 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d = 10$ mm \\ \hline \mbox{7000 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d = 10$ mm \\ \hline \mbox{7000 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d = 10$ mm \\ \hline \mbox{7000 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson 100 h for $d \geq 12.5$ mm \\ \hline \mbox{Pointson$	Surge voltage Vs	$1.15 \cdot V_{R}$												
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Rated capacitance C _R	180 10	000 μF											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Capacitance tolerance	$\pm 20\% \triangleq I$	M											
$\label{eq:response} \begin{array}{ c c c c c } \hline V_{R}(V \ DC) & 10 & 16 \dots 25 & 35 & 50 \\ \hline tan \ \delta \ (max.) & 0.20 & 0.17 & 0.12 & 0.10 \\ \hline \\ \hline \\ teakage current I_{leak} & 0.01 \ \mu A \cdot \left(\frac{C_{R}}{\mu F} \cdot \frac{V_{R}}{V}\right) \ or \ 3 \ \mu A, \ whichever \ is \ greater \\ \hline \\ \hline \\ (20 \ ^{\circ}C, \ 5 \ min) & I_{leak} & = 0.01 \ \mu A \cdot \left(\frac{C_{R}}{\mu F} \cdot \frac{V_{R}}{V}\right) \ or \ 3 \ \mu A, \ whichever \ is \ greater \\ \hline \\ \hline \\ \hline \\ Self-inductance ESL & Diameter \ (mm) & \leq 12.5 & 16 & 18 \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \hline \\$	Dissipation factor tan δ	For capa	citance hi	gher than 100	00 µF add 0.	02 for every	y increase of							
$\begin{array}{ c c c c c c } \hline Interval & I$	(20 °C, 120 Hz)	1000 µF.	10 μF.											
$\begin{array}{ c c c c } \mbox{Leakage current } I_{leak} & I_{leak} = 0.01 \ \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V} \right) \ \mbox{or } 3 \ \mu A, \ \mbox{whichever is greater} \\ \hline \end{tabular} $		V _R (V DC	(V DC) 10 16 25 35 50											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$tan \delta$ (ma	ıx.)	0.20	0.17	0.12	0.10							
$\begin{array}{ c c c c } \hline ESL (nH) & 20 & 26 & 34 \\ \hline ESL (nH) & 20 & 26 & 34 \\ \hline Useful life^{1)} & > 3500 h for d = 10 mm \\ > 7000 h for d \geq 12.5 mm \\ \hline 35 ^{\circ}C; V_{\text{R}}; 0.75 \cdot I_{\text{AC,R}} & > 1000 h for d = 10 mm \\ > 3000 h for d \geq 12.5 mm \\ \hline 3000 h for d \geq 12.5 mm \\ \hline 3000 h for d \geq 12.5 mm \\ \hline S000 h for d \geq 12.5 mm \\ \hline S000 h for d \geq 12.5 mm \\ \hline S000 h for d \geq 12.5 mm \\ \hline S000 h for d \geq 12.5 mm \\ \hline S000 h for d \geq 12.5 mm \\ \hline S000 h for d = 10 mm \\ \hline S000 h for d \geq 12.5 mm \\ \hline S000 h for d = 10 mm \\ \hline 7000 h for d \geq 12.5 mm \\ \hline Voltage endurance test \\ 125 ^{\circ}C, V_{\text{R}} & 3500 h for d = 10 mm \\ \hline 7000 h for d \geq 12.5 mm \\ \hline Voltage endurance test \\ 125 ^{\circ}C, V_{\text{R}} & 3500 h for d = 10 mm \\ \hline 7000 h for d \geq 12.5 mm \\ \hline Voltage endurance test \\ 125 ^{\circ}C, V_{\text{R}} & 3500 h for d = 10 mm \\ \hline 7000 h for d \geq 12.5 mm \\ \hline Voltage endurance test \\ 125 ^{\circ}C, V_{\text{R}} & 3500 h for d = 10 mm \\ \hline 7000 h for d \geq 12.5 mm \\ \hline Voltage endurance test \\ \hline 125 ^{\circ}C, V_{\text{R}} & 3500 h for d = 10 mm \\ \hline 7000 h for d \geq 12.5 mm \\ \hline To IEC 60068-2.6, test Fc: \\ \hline Frequency range 10 Hz 2 kHz, displacement amplitude max. \\ 1.5 mm, acceleration max. 20 g, duration 3 \times 2 h. \\ \hline Capacitor rigidly clamped by the aluminum case. \\ \hline IEC climatic category & To IEC 60068-1: 55/125/56 (-55 ^{\circ}C/+125 ^{\circ}C/56 days damp heat test) \\ \hline \end{array}$		I _{leak} = 0	0.01 μA • ($\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$ or	⁻ 3 μA, which	never is grea	ater							
Useful life1)> 3500 h for d = 10 mm > 7000 h for d \geq 12.5 mm125 °C; V _R ; I _{AC,R} > 3500 h for d \geq 12.5 mm135 °C; V _R ; 0.75 · I _{AC,R} > 1000 h for d \geq 12.5 mmRequirements $\Delta C/C \leq \pm 35\%$ of initial value tan $\delta \leq 3$ times initial specified limit $I_{leak} \leq$ initial specified limitVoltage endurance test3500 h for d = 10 mm 7000 h for d \geq 12.5 mmVoltage endurance test3500 h for d = 10 mm 7000 h for d \geq 12.5 mmPost test requirements $\Delta C/C \leq \pm 30\%$ of initial value tan $\delta \leq 2$ times initial specified limitVibration resistance test $\Delta C/C \leq \pm 30\%$ of initial value tan $\delta \leq 2$ times initial specified limitVibration resistance testTo IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g, duration 3×2 h. Capacitor rigidly clamped by the aluminum case.IEC climatic categoryTo IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)	Self-inductance ESL	Diameter	(mm)	≤ 12.5	16	18								
$\begin{array}{llllllllllllllllllllllllllllllllllll$		ESL (nH)		20	26	34								
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Useful life ¹⁾				•									
$\begin{array}{llllllllllllllllllllllllllllllllllll$	125 °C; V _R ; I _{AC,R}	> 3500 h	for $d = 10$) mm										
$\begin{array}{l ll} \mbox{Pequirements} & > 3000 \mbox{ h for } d \geq 12.5 \mbox{ mm} \\ & \Delta C/C & \leq \pm 35\% \mbox{ of initial value} \\ & tan \ \delta & \leq 3 \ times \ initial \ specified \ limit \\ & I_{leak} & \leq initial \ specified \ limit \\ \hline & Voltage \ endurance \ test \\ 125 \ ^{\circ}C, \ V_{R} & 3500 \ h \ for \ d = 10 \ mm \\ & 7000 \ h \ for \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \ d = 10 \ $		> 7000 h	for $d \ge 12$	2.5 mm										
$\begin{array}{l ll} \mbox{Pequirements} & > 3000 \mbox{ h for } d \geq 12.5 \mbox{ mm} \\ & \Delta C/C & \leq \pm 35\% \mbox{ of initial value} \\ & tan \ \delta & \leq 3 \ times \ initial \ specified \ limit \\ & I_{leak} & \leq initial \ specified \ limit \\ \hline & Voltage \ endurance \ test \\ 125 \ ^{\circ}C, \ V_{R} & 3500 \ h \ for \ d = 10 \ mm \\ & 7000 \ h \ for \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d \geq 12.5 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \\ \hline & 7000 \ h \ d = 10 \ mm \ d = 10 \ $	135 °C; V _B ; 0.75 ⋅ I _{ACB}	> 1000 h	for $d = 10$) mm										
$ \begin{array}{ c c c c c } tan \ \delta & \leq 3 \ times \ initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline Voltage \ endurance \ test \\ 125 \ ^{\circ}C, \ V_{R} & 3500 \ h \ for \ d = 10 \ mm \\ \hline 7000 \ h \ for \ d \geq 12.5 \ mm \\ \hline 7000 \ h \ for \ d \geq 12.5 \ mm \\ \hline Post \ test \ requirements & \Delta C/C & \leq \pm 30\% \ of \ initial \ value \\ tan \ \delta & \leq 2 \ times \ initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline Vibration \ resistance \ test \\ \hline To \ IEC \ 60068-2-6, \ test \ Fc: \\ Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ max. \\ 1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \times 2 \ h. \\ \hline Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case. \\ \hline IEC \ climatic \ category \ To \ IEC \ 60068-1: \ 55/125/56 \ (-55 \ ^{\circ}C/+125 \ ^{\circ}C/56 \ days \ damp \ heat \ test) \\ \hline \end{array}$		> 3000 h	for $d \ge 12$	2.5 mm										
$ \begin{array}{ c c c c c } tan \ \delta & \leq 3 \ times \ initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline Voltage \ endurance \ test \\ 125 \ ^{\circ}C, \ V_{R} & 3500 \ h \ for \ d = 10 \ mm \\ \hline 7000 \ h \ for \ d \geq 12.5 \ mm \\ \hline 7000 \ h \ for \ d \geq 12.5 \ mm \\ \hline Post \ test \ requirements & \Delta C/C & \leq \pm 30\% \ of \ initial \ value \\ tan \ \delta & \leq 2 \ times \ initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline Vibration \ resistance \ test \\ \hline To \ IEC \ 60068-2-6, \ test \ Fc: \\ Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ max. \\ 1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \times 2 \ h. \\ \hline Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case. \\ \hline IEC \ climatic \ category \ To \ IEC \ 60068-1: \ 55/125/56 \ (-55 \ ^{\circ}C/+125 \ ^{\circ}C/56 \ days \ damp \ heat \ test) \\ \hline \end{array}$	Requirements	∆C/C	≤±35%	of initial valu	e									
Voltage endurance test3500 h for d = 10 mm 7000 h for d ≥ 12.5 mmPost test requirements $\Delta C/C \leq \pm 30\%$ of initial value tan $\delta \leq 2$ times initial specified limit $I_{leak} \leq$ initial specified limitVibration resistance testTo IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g, duration 3×2 h. Capacitor rigidly clamped by the aluminum case.IEC climatic categoryTo IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)	•	tan δ	≤ 3 time	s initial speci	fied limit									
Voltage endurance test3500 h for d = 10 mm125 °C, V _R 3500 h for d ≥ 12.5 mmPost test requirements $\Delta C/C \leq \pm 30\%$ of initial value $\tan \delta \leq 2$ times initial specified limit $I_{leak} \leq$ initial specified limitVibration resistance testTo IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g, duration 3×2 h. Capacitor rigidly clamped by the aluminum case.IEC climatic categoryTo IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)		I _{leak}	\leq initial :	specified limit	t									
Post test requirements $\Delta C/C \leq \pm 30\%$ of initial value tan $\delta \leq 2$ times initial specified limit $I_{leak} \leq$ initial specified limitVibration resistance testTo IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g, duration 3×2 h. Capacitor rigidly clamped by the aluminum case.IEC climatic categoryTo IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)	Voltage endurance test			-										
$\begin{array}{llllllllllllllllllllllllllllllllllll$	125 °C, V _R	3500 h fo	or d = 10 n	nm										
$\begin{array}{l ll} tan \ \delta & \leq 2 \ times \ initial \ specified \ limit \\ \hline I_{leak} & \leq initial \ specified \ limit \\ \hline Vibration \ resistance \ test \\ \hline To \ IEC \ 60068-2-6, \ test \ Fc: \\ Frequency \ range \ 10 \ Hz \ \ 2 \ kHz, \ displacement \ amplitude \ max. \\ 1.5 \ mm, \ acceleration \ max. \ 20 \ g, \ duration \ 3 \times 2 \ h. \\ Capacitor \ rigidly \ clamped \ by \ the \ aluminum \ case. \\ \hline IEC \ climatic \ category \\ \hline To \ IEC \ 60068-1: \ 55/125/56 \ (-55\ ^{\circ}C/+125\ ^{\circ}C/56 \ days \ damp \ heat \ test) \\ \hline \end{array}$		7000 h fo	or d ≥ 12.5	mm										
$\label{eq:leak} \begin{split} & \underline{I}_{leak} & \leq \text{initial specified limit} \\ \\ & \text{Vibration resistance test} & \text{To IEC 60068-2-6, test Fc:} \\ & \text{Frequency range 10 Hz 2 kHz, displacement amplitude max.} \\ & 1.5 \text{ mm, acceleration max. 20 } g, \text{ duration } 3 \times 2 \text{ h.} \\ & \text{Capacitor rigidly clamped by the aluminum case.} \\ & \text{IEC climatic category} & \text{To IEC 60068-1: 55/125/56 } (-55\ ^{\circ}\text{C}/+125\ ^{\circ}\text{C/56 } \text{ days damp heat test}) \\ \end{split}$	Post test requirements	∆C/C	≤±30%	of initial valu	e									
Vibration resistance test To IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g, duration 3 × 2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)		tan δ	\leq 2 time	s initial speci	fied limit									
Vibration resistance test To IEC 60068-2-6, test Fc: Frequency range 10 Hz 2 kHz, displacement amplitude max. 1.5 mm, acceleration max. 20 g, duration 3 × 2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)		I _{leak}	\leq initial	specified limit	t									
1.5 mm, acceleration max. 20 g, duration 3 × 2 h. Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)	Vibration resistance test		0068-2-6,	test Fc:										
Capacitor rigidly clamped by the aluminum case. IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)		Frequenc	y range 1	0 Hz 2 kH	z, displacen	nent amplitu	ıde max.							
IEC climatic category To IEC 60068-1: 55/125/56 (-55 °C/+125 °C/56 days damp heat test)		1.5 mm, acceleration max. 20 g , duration 3×2 h.												
Sectional specification IEC 60384-4, AEC-Q200	IEC climatic category	To IEC 6	0068-1: 5	5/125/56 (-5	5 °C/+125 °(C/56 days c	lamp heat test)							
	Sectional specification	IEC 6038	84-4, AEC	-Q200										

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

Dimensional drawing

With stand-off rubber seal

Diameters (mm): 10, 12.5, 16, 18

Dimensions and weights

Dimensions (mm)			Approx. weight
d +0.5	1	a ±0.5	b	g
10	20 +2.0	5.0	0.60 ±0.05	2.6
12.5	20 +2.0	5.0	0.60 ±0.05	3.6
12.5	25 +2.0	5.0	0.60 ±0.05	4.5
12.5	30 +2.0	5.0	0.80 ±0.05	5.3
12.5	40 +2.0	5.0	0.80 ±0.05	7.4
16	20 +2.0	7.5	0.80 ±0.05	5.5
16	25 +2.0	7.5	0.80 ±0.05	7.5
16	31.5 +2.0	7.5	0.80 ±0.05	7.8
16	35.5 +2.0	7.5	0.80 ±0.05	9.2
18	20 +2.0	7.5	0.80 ±0.1	8.0
18	25 +2.0	7.5	0.80 ±0.1	9.0
18	31.5 +2.0	7.5	0.80 ±0.1	11.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.5	7.5	0.80 ±0.1	16.0

Up to 135 °C

Overview of available types

V _R (V DC)	10	16	25	35	50
	Case dimens	ions d \times l (mm)			
C _R (μF)					
180					10 × 20
220					10 × 20
270				10 × 20	12.5×20
330				10 × 20	12.5 imes 20
390				12.5×20	12.5×25
470			10 × 20	12.5×20	12.5 × 25 16 × 20
560			10 × 20	12.5 × 25	16 × 20
680			10 × 20	12.5 × 25	16 × 25 18 × 20
820	10 ×20	10 ×20	12.5 × 20	16 × 20	16 × 31.5
1000	10 × 20	12.5 × 20	12.5 × 25 16 × 20	$\begin{array}{c} 12.5 \times 40 \\ 16 \times 25 \\ 18 \times 20 \end{array}$	16 × 31.5
1200	12.5 × 20	12.5 × 20	12.5 × 25	16 × 25 18 × 20	18 × 31.5
1500	12.5 × 20	12.5 × 25	16 × 20	16 × 31.5 18 × 25	18 × 35
1800	12.5 × 20	12.5 × 25	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 × 31.5	18 × 40
2000				16 × 35.5 18 × 31.5	
2200	12.5 × 25	12.5 × 30 16 × 20	16 × 31.5 18 × 25	18 × 35	
2700	16 × 20	16 × 25 18 × 20	16 × 31.5	18 × 40	
3300	16 × 25	16 × 31.5	16 × 35.5 18 × 31.5		
3900	16 × 25 18 × 20	16 × 31.5	18 × 35		

Up to 135 °C

V _R (V DC)	10	16	25	35	50
	Case dimens	sions d $ imes$ l (mm)			
C _R (μF)					
4700	16 imes 31.5	18×31.5	18 × 40		
5600	16 imes 31.5	18×35			
6800	18×31.5	18×40			
8200	18×35				
10000	18×40				

Other voltage and capacitance ratings are available upon request.

Up to 135 °C

B41896

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d×I	−40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	
V _R = 10 V D	C					
820	10 ×20	0.592	0.074	0.062	1205	B41896C3827M***
1000	10 ×20	0.592	0.074	0.062	1205	B41896C3108M***
1200	12.5×20	0.484	0.061	0.055	1820	B41896C3128M***
1500	12.5×20	0.484	0.061	0.055	1820	B41896C3158M***
1800	12.5×20	0.484	0.061	0.055	1820	B41896C3188M***
2200	12.5×25	0.285	0.041	0.038	2280	B41896C3228M***
2700	16 ×20	0.299	0.037	0.034	2280	B41896C3278M***
3300	16 ×25	0.238	0.030	0.026	2860	B41896C3338M***
3900	16 ×25	0.238	0.030	0.026	2860	B41896C3398M***
3900	18 ×20	0.273	0.034	0.031	2490	B41896D3398M***
4700	16 × 31.5	0.185	0.023	0.022	3160	B41896C3478M***
5600	16 × 31.5	0.185	0.023	0.022	3160	B41896C3568M***
6800	18 × 31.5	0.178	0.022	0.021	3500	B41896C3688M***
8200	18 ×35	0.178	0.022	0.019	3840	B41896C3828M***
10000	18 ×40	0.150	0.019	0.016	4230	B41896C3109M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 002 = for cut leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 003 = for crimped leads, blister (for \oslash 16 ... 18 mm)
- 004 = for J leads, blister (for \oslash 10 ... 18 mm, excluding d × l = 12.5 × 30/40 and 18 × 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 10 \times 20 \dots 12.5 \times 25$ mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Up to 135 °C

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	$d \times l$	−40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	
V _R = 16 V	DC					
820	10 × 20	0.592	0.074	0.062	1205	B41896C4827M***
1000	12.5×20	0.484	0.061	0.055	1820	B41896C4108M***
1200	12.5×20	0.484	0.061	0.055	1820	B41896C4128M***
1500	12.5×25	0.285	0.041	0.038	2280	B41896C4158M***
1800	12.5×25	0.285	0.041	0.038	2280	B41896C4188M***
2200	12.5 imes 30	0.238	0.030	0.026	2860	B41896C4228M***
2200	16 × 20	0.299	0.037	0.034	2280	B41896D4228M***
2700	16 × 25	0.238	0.030	0.026	2860	B41896C4278M***
2700	18 ×20	0.273	0.034	0.031	2490	B41896D4278M***
3300	16 × 31.5	0.185	0.023	0.022	3160	B41896C4338M***
3900	16 × 31.5	0.185	0.023	0.022	3160	B41896C4398M***
4700	18 × 31.5	0.178	0.022	0.021	3500	B41896C4478M***
5600	18 × 35	0.178	0.022	0.019	3840	B41896C4568M***
6800	18 ×40	0.150	0.019	0.016	4230	B41896C4688M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and \emptyset 16 ... 18 mm)
- 002 = for cut leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 003 = for crimped leads, blister (for \oslash 16 ... 18 mm)
- 004 = for J leads, blister (for \varnothing 10 ... 18 mm, excluding d \times l = 12.5 \times 30/40 and 18 \times 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 10 \times 20 \dots 12.5 \times 25 \text{ mm}$)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Up to 135 °C

B41896

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC.B}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d × I	−40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	,
V _R = 25 V D	С			•		
470	10 × 20	0.592	0.074	0.062	1205	B41896C5477M***
560	10 ×20	0.592	0.074	0.062	1205	B41896C5567M***
680	10 × 20	0.592	0.074	0.062	1205	B41896C5687M***
820	12.5 × 20	0.484	0.061	0.055	1820	B41896C5827M***
1000	12.5×25	0.285	0.041	0.038	2280	B41896C5108M***
1000	16 ×20	0.299	0.037	0.034	2280	B41896D5108M***
1200	12.5 × 25	0.285	0.041	0.038	2280	B41896C5128M***
1500	16 ×20	0.299	0.037	0.034	2280	B41896C5158M***
1800	12.5 × 40	0.181	0.023	0.021	3340	B41896C5188M***
1800	16 ×25	0.238	0.030	0.026	2860	B41896D5188M***
1800	18 ×20	0.273	0.034	0.031	2490	B41896E5188M***
2200	16 × 31.5	0.185	0.023	0.022	3160	B41896C5228M***
2200	18 ×25	0.229	0.029	0.025	3010	B41896D5228M***
2700	16 × 31.5	0.185	0.023	0.022	3160	B41896C5278M***
3300	16 × 35.5	0.180	0.022	0.020	3467	B41896D5338M***
3300	18 ×31.5	0.178	0.022	0.021	3500	B41896C5338M***
3900	18 ×35	0.178	0.022	0.019	3840	B41896C5398M***
4700	18 × 40	0.150	0.019	0.016	4230	B41896C5478M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $d \times I = 10 \times 20 \dots 12.5 \times 25$ mm and \emptyset 16 ... 18 mm)
- 002 = for cut leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 003 = for crimped leads, blister (for \emptyset 16 ... 18 mm)
- 004 = for J leads, blister (for \varnothing 10 ... 18 mm, excluding d × l = 12.5 × 30/40 and 18 × 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for d \times l = 10 \times 20 ... 12.5 \times 25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Up to 135 °C

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC.B}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d×l	-40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	
$V_{\rm B} = 35 \text{ V C}$	1	35	35			
••	T.	0.500	0.074	0.000	1005	D 44 000 0 70 7 71 4***
270	10 ×20	0.592	0.074	0.062	1205	B41896C7277M***
330	10 ×20	0.592	0.074	0.062	1205	B41896C7337M***
390	12.5×20	0.484	0.061	0.055	1820	B41896C7397M***
470	12.5×20	0.484	0.061	0.055	1820	B41896C7477M***
560	12.5×25	0.285	0.041	0.038	2280	B41896C7567M***
680	12.5×25	0.285	0.041	0.038	2280	B41896C7687M***
820	16 ×20	0.299	0.037	0.034	2280	B41896C7827M***
1000	12.5×40	0.181	0.023	0.021	3340	B41896C7108M***
1000	16 × 25	0.238	0.030	0.026	2860	B41896D7108M***
1000	18 ×20	0.273	0.034	0.031	2490	B41896E7108M***
1200	16 × 25	0.238	0.030	0.026	2860	B41896C7128M***
1200	18 ×20	0.273	0.034	0.031	2490	B41896D7128M***
1500	16 × 31.5	0.185	0.023	0.022	3160	B41896C7158M***
1500	18 ×25	0.232	0.029	0.025	3010	B41896D7158M***
1800	16 × 31.5	0.185	0.023	0.022	3160	B41896C7188M***
2000	16 × 35.5	0.180	0.022	0.020	3467	B41896C7208M***
2000	18 × 31.5	0.176	0.022	0.021	3500	B41896D7208M***
2200	18 × 35	0.178	0.022	0.019	3840	B41896C7228M***
2700	18 × 40	0.150	0.019	0.016	4230	B41896C7278M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 002 = for cut leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 003 = for crimped leads, blister (for \emptyset 16 ... 18 mm)
- 004 = for J leads, blister (for \varnothing 10 ... 18 mm, excluding d \times l = 12.5 \times 30/40 and 18 \times 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 10 \times 20 \dots 12.5 \times 25 \text{ mm}$)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Up to 135 °C

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	Ordering code
120 Hz	dimensions	10 kHz	10 kHz	100 kHz	100 kHz	(composition see
20 °C	d×l	−40 °C	20 °C	20 °C	125 °C	below)
μF	mm	Ω	Ω	Ω	mA	
V _R = 50 V D	C					
180	10 ×20	0.592	0.074	0.062	1205	B41896C6187M***
220	10 ×20	0.592	0.074	0.062	1205	B41896C6227M***
270	12.5×20	0.484	0.061	0.055	1820	B41896C6277M***
330	12.5×20	0.484	0.061	0.055	1820	B41896C6337M***
390	12.5×25	0.352	0.044	0.041	2280	B41896D6397M***
470	12.5×25	0.352	0.044	0.041	2280	B41896E6477M***
470	16 ×20	0.299	0.037	0.034	2280	B41896D6477M***
560	16 ×20	0.299	0.037	0.034	2280	B41896C6567M***
680	16 × 25	0.238	0.030	0.026	2860	B41896C6687M***
680	18 ×20	0.273	0.034	0.031	2490	B41896D6687M***
820	16 × 31.5	0.185	0.023	0.022	3160	B41896C6827M***
1000	16 × 31.5	0.185	0.023	0.022	3160	B41896C6108M***
1200	18 × 31.5	0.178	0.022	0.021	3500	B41896C6128M***
1500	18 ×35	0.178	0.022	0.019	3840	B41896C6158M***
1800	18 ×40	0.150	0.019	0.016	4230	B41896C6188M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 002 = for cut leads, bulk (for d \times l = 10 \times 20 ... 12.5 \times 25 mm and Ø 16 ... 18 mm)
- 003 = for crimped leads, blister (for \oslash 16 ... 18 mm)
- 004 = for J leads, blister (for \oslash 10 ... 18 mm, excluding d × l = 12.5 × 30/40 and 18 × 40 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (for $d \times I = 10 \times 20 \dots 12.5 \times 25$ mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (for d \times l = 16 \times 20 ... 16 \times 31.5 mm and 18 \times 20 ... 18 \times 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 ... 18 mm)

Useful life1)

depending on ambient temperature T_A under ripple current operating conditions

Useful life¹⁾

depending on ambient temperature T_A under ripple current operating conditions

 $d \ge 12.5 \text{ mm}$

1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

☆TDK

B41896 Up to 135 °C

Frequency factor of permissible ripple current \mathbf{I}_{AC} versus frequency f

Taping, packing and lead configurations

Taping

Single-ended capacitors are available taped in Ammo pack from diameter 8 to 18 mm as follows:

Lead spacing F = 3.5 mm (\varnothing d = 8 mm) Lead spacing F = 5.0 mm (\varnothing d = 8 ... 12.5 mm) Lead spacing F = 7.5 mm (\varnothing d = 16 ... 18 mm).

Lead spacing 3.5 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 006

Dimensions in mm

$\emptyset d$	F	Н	W	W ₀	W ₁	W_2	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
8	3.5	18.5	18.0	9.5	9.0	3.0	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler- ance	+0.8 -0.2	±1.0	±0.5	min.	±0.5	max.	±1.0	±0.3	±0.6	max.	±0.2	max.	±0.2
ance	-0.2												

Leads can also run straight through the taping area.

Lead spacing 5.0 mm (Ø d = 8 mm)

Last 3 digits of ordering code: 008

Lead spacing 5.0 mm (\emptyset d = 10 ... 12.5 mm)

Last 3 digits of ordering code: 008

Dimensions in mm

Ød	F	Н	W	W_{0}	W_1	W2	H₀	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
4 6.3	5.0	18.5	18.0	5.5	9.0	1.5	16.0	12.7	12.7	3.85	1.0	0.6	1.0	4.0
8		20.0		9.5			16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	9.5	9.0	1.5	-	12.7	12.7	3.85	1.0	0.6	1.0	4.0
12.5		19.0		11.5			-	15.0	15.0	5.0				
Toler- ance	+0.8 -0.2	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	+0.3 -0.2	max.	±0.2

Taping is available up to dimensions $d \times I = 12.5 \times 25$ mm.

Lead spacing 7.5 mm (\emptyset d = 16 ...18 mm)

Last 3 digits of ordering code: 009

Dimensions in mm

\emptyset d	F	Н	W	W ₀	W_1	W_2	Р	P ₀	P ₁	I_1	t	ΔP	Δh	D_0
16	7.5	195	10.0	12.5	0.0	15	20.0	15.0	2 75	1.0	0.7	0	0	4.0
18	7.5	10.5	10.0	12.0	9.0	1.5	30.0	15.0	5.75	1.0	0.7	0	0	4.0
Toler- ance	±0.8	-0.5 +0.75	±0.5	min.	±0.5	max.	±1.0	±0.2	±0.5	max.	±0.2	±1.0	±1.0	±0.2

Taping is available up to dimensions $d \times I = 16 \times 31.5$ mm and 18×31.5 mm.

Cut or kinked leads

Single-ended capacitors are available with cut or kinked leads. Other lead configurations also available upon request.

Cut leads

Last 3 digits of ordering code: 002

With stand-off rubber seal

KAL1085-I

With flat rubber seal

KA	L1	08	6-	R

Case size	Dimensions (mm)
d $ imes$ l (mm)	a ±0.5
10 × 12.5	5.0
10 × 16	5.0
10×20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
16×20	7.5
16×25	7.5
16×31.5	7.5
16 × 35.5	7.5
18×20	7.5
18×25	7.5
18×31.5	7.5
18 × 35	7.5
18×40	7.5

Kinked leads

Last 3 digits of ordering code: 001

With stand-off rubber seal

KAL1083-2

With flat rubber seal

KAL1082-T

KAL1084-A

a ±0.5
5.0
5.0
5.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5

PAPR leads (Protection Against Polarity Reversal)

These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 18 mm (excluding d \times l = 12.5 \times 30/35/40 mm).

There are three configurations available: Crimped leads, J leads, bent 90° leads

Crimped leads

Last 3 digits of ordering code: 003

With stand-off rubber seal

With flat rubber seal

Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire $\emptyset 1.0 \text{ mm}$

Case size	Dimensio	Dimensions (mm)					
$d \times I$ (mm)	B ±0.2	C ±0.5	D ±0.1	E ±0.1	a ±0.5	Øb	
16×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
16×25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
16×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
16 × 35.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05	
18×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18×25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18 × 35	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	
18×40	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1	

J leads

Last 3 digits of ordering code: 004

Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire $\texttt{Ø0.6}\ \texttt{mm}$

Suggestion for PCB hole diameter, wire $\emptyset 0.8 \text{ mm}$

Case size	Dimensions (mm)					
$d \times I (mm)$	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Øb	
10 × 12.5	3.2	0.7	1.2	5.0	0.6 ±0.05	
10×16	3.2	0.7	1.2	5.0	0.6 ±0.05	
10×20	3.2	0.7	1.2	5.0	0.6 ±0.05	
12.5 × 20	3.2	0.7	1.2	5.0	0.6 ±0.05	
12.5×25	3.2	0.7	1.2	5.0	0.6 ±0.05	
16×20	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 imes 25	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 imes 31.5	3.5	0.7	1.6	7.5	0.8 ±0.05	
16 imes 35.5	3.5	0.7	1.6	7.5	0.8 ±0.05	
18×20	3.5	0.7	1.6	7.5	0.8 ±0.1	
18×25	3.5	0.7	1.6	7.5	0.8 ±0.1	
18×31.5	3.5	0.7	1.6	7.5	0.8 ±0.1	
18 × 35	3.5	0.7	1.6	7.5	0.8 ±0.1	

⊗TDK

B41896 Up to 135 °C

Bent 90° leads for horizontal mounting pinning

Last 3 digits of ordering code: 012

Case size	Dimension	Dimensions (mm)				
$d \times I$ (mm)	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Øb	
16×20	4.0	4.0	12.0	7.5	0.8 ±0.05	
16×25	4.0	4.0	12.0	7.5	0.8 ±0.05	
16×31.5	4.0	4.0	12.0	7.5	0.8 ±0.05	
16 × 35.5	4.0	4.0	12.0	7.5	0.8 ±0.05	
18×20	4.0	4.0	13.0	7.5	0.8 ±0.1	
18×25	4.0	4.0	13.0	7.5	0.8 ±0.1	
18×31.5	4.0	4.0	13.0	7.5	0.8 ±0.1	
18×35	4.0	4.0	13.0	7.5	0.8 ±0.1	
18×40	4.0	4.0	13.0	7.5	0.8 ±0.1	

Bent leads for diameter 12.5 mm available upon request.

B41896

Up to 135 °C

Packing units and box dimensions

Ammo pack

Case size d × l	Dimer	Dimensions (mm)				
mm	A_{max}	B_{\max}	\mathbf{C}_{\max}	pcs.		
8×11.5	345	55	240	1000		
10 × 12.5	345	55	280	750		
10×16	345	60	200	500		
10×20	345	60	200	500		
12.5 imes 20	345	65	280	500		
12.5 imes 25	345	65	280	500		
16×20	315	65	275	300		
16×25	315	65	275	300		
16 imes 31.5	315	65	275	300		
18×20	315	65	275	250		
18×25	315	65	275	250		
18×31.5	315	65	275	250		

Overview of packing units and code numbers for case sizes 8×11.5 ... 16×35.5

								PAPR	
Case size	Stan-	Taped	l,		Kinked	Cut	Crimped	J leads,	Bent 90°
$d \times I$	dard,	Ammo	o pack		leads,	leads,	leads,	blister	leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
8×11.5	1000	1000			-	-	-	-	
10 imes 12.5	1000	750			-	1000	-	675	
10×16	1000	500			-	1000	-	675	
10×20	500	500	500			500	-	500	
12.5 × 20	350	500			350	350	-	300	1)
12.5 × 25	250	500	500			500	-	225	1)
12.5 × 30	200	_			-	-	-	_	
12.5 × 35	175	-	_			-	-	-	
12.5 × 40	175	-	-		-	-	-	-	
16×20	250	300			200	200	200	200	120
16×25	250	300			200	200	200	200	216
16×31.5	200	300			250	250	344	344	180
16 × 35.5	100	-			100	100	150	150	150
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8					
complete		008	5	812.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

Up to 135 °C

Overview of packing units and code numbers for case sizes $18\times 20 \ ... \ 18\times 40$

								PAPR	
Case size d × l	Stan- dard,	Taped Ammo	-		Kinked leads,	Cut leads,	Crimped leads,	J leads, blister	Bent 90° leads,
	bulk				bulk	bulk	blister		blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
18×20	175	250	250			175	200	200	120
18×25	150	250	250			150	200	200	120
18 imes 31.5	100	250	250			100	150	150	120
18 imes 35	100	-	_		100	100	150	150	150
18×40	125	-			100	100	120	-	72
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the complete ordering code state the lead configuration		009	7.5	1618					

Up to 135 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. However, the amount of dangerous materials used in our products is limited to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request. MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Up to 135 °C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw- terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents Upper category temperature	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors. Do not exceed the upper category temperature.	11.6 "Cleaning agents" 7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, such as fire or electricity.	8.1 "Passive flammability"

Up to 135 °C

B41896

1	O	1
		J
	Ĭ	2

Topic	Safety information	Reference
		chapter "General
		technical information"
Active	Avoid overload of the capacitors.	8.2
flammability		"Active flammability"
Maintenance	Make periodic inspections of the capacitors.	10
	Before the inspection, make sure that the power	"Maintenance"
	supply is turned off and carefully discharge the	
	electricity of the capacitors.	
	Do not apply any mechanical stress to the	
	capacitor terminals.	
Storage	Do not store capacitors at high temperatures or	7.3
	high humidity. Capacitors should be stored at	Storage conditions
	+5 to +35 °C and a relative humidity of \leq 75%.	
		Reference
		chapter "Capacitors with
		screw terminals"
Breakdown strength	Do not damage the insulating sleeve, especially	"Screw terminals -
of insulating	when ring clips are used for mounting.	accessories"
sleeves		

Up to 135 °C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C _R	Rated capacitance	Nennkapazität
Cs	Series capacitance	Serienkapazität
C _{S,T}	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C _f	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d _{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR_{T}	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
I	Current	Strom
I _{AC}	Alternating current (ripple current)	Wechselstrom
I _{AC,rms}	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
I _{AC,f}	Ripple current at frequency f	Wechselstrom bei Frequenz f
I _{AC,max}	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
I _{AC,R}	Rated ripple current	Nennwechselstrom
I _{AC,R} (B)	Rated ripple current for base cooling	Nennwechselstromstrom für Bodenkühlung
I _{leak}	Leakage current	Reststrom
I _{leak,op}	Operating leakage current	Betriebsreststrom
I	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without	Maximale Gehäuselänge (ohne Anschlüsse
	terminals and mounting stud)	und Gewindebolzen)
R	Resistance	Widerstand
R _{ins}	Insulation resistance	Isolationswiderstand
R_{symm}	Balancing resistance	Symmetrierwiderstand
Т	Temperature	Temperatur
ΔT	Temperature difference	Temperaturdifferenz
T _A	Ambient temperature	Umgebungstemperatur
Tc	Case temperature	Gehäusetemperatur
Т _в	Capacitor base temperature	Temperatur des Becherbodens
t	Time	Zeit
Δt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

Up to 135 °C

Symbol	English	German
V	Voltage	Spannung
V _F	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V _R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
Vs	Surge voltage	Spitzenspannung
Xc	Capacitive reactance	Kapazitiver Blindwiderstand
XL	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Ζ _T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
tan δ	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ε ₀	Absolute permittivity	Elektrische Feldkonstante
ε _r	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.