

Innovative Service Around the Globe

# DATA SHEET SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS Automotive grade

NPO/X7R 6.3 V TO 630 V 0.2 pF to 2.2 μF RoHS compliant & Halogen Free



YAGEO Phícomp

2

Surface-Mount Ceramic Multilaver Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

## SCOPE

This specification describes Automotive grade NP0/X7R series chip capacitors with lead-free terminations and used for automotive equipments.

### **APPLICATIONS**

All general purpose applications Entertainment applications Comfort / security applications Information applications

### FEATURES

- AEC-Q200 gualified
- MSL class: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
- Reduce environmentally hazardous waste
- · High component and equipment reliability
- Save PCB space
- The capacitors are 100% performed by automatic optical inspection prior to taping.

## ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

## **GLOBAL PART NUMBER**

AC <u>XXXX X X XXX X B X XXX</u> (6) (7) (1) (2) (3) (4) (5)

### (I) SIZE – INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216)/ 1210 (3225) / 0508 (1220) / 0612 (1632)

### (2) TOLERANCE

 $B = \pm 0.1 \text{ pF}$  $C = \pm 0.25 \text{ pF}$  $D = \pm 0.5 \, \text{pF}$  $F = \pm 1\%$  $G = \pm 2\%$  $| = \pm 5\%$  $K = \pm 10\%$  $M = \pm 20\%$ 

### (3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch

### (4) TC MATERIAL

| NPO |
|-----|
| X7R |

#### (5) RATED VOLTAGE

| 5 = 6.3 V      |  |  |
|----------------|--|--|
| 6 = 10 V       |  |  |
| 7 = 16 V       |  |  |
| 8 = 25 V       |  |  |
| 9 = 50 V       |  |  |
| $0 = 100 \vee$ |  |  |
| A = 200 V      |  |  |
| Y = 250 V      |  |  |
| B = 500 V      |  |  |
| Z = 630 V      |  |  |
|                |  |  |

## (6) PROCESS

N = NP0

B = Class 2 MLCC

#### (7) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example:  $|2| = |2 \times |0| = |20 \text{ pF}$ 

### **CONSTRUCTION**

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are leadfree. A cross section of the structure is shown in Fig.1.

Table I For outlines see fig. 2

#### **DIMENSION**



| ТҮРЕ | L <sub>I</sub> (mm) | W (mm)     | T (MM)                    | L <sub>2</sub> /<br>min. | ′ L <sub>3</sub> (mm)<br>max. | L <sub>4</sub> (mm)<br>min. |
|------|---------------------|------------|---------------------------|--------------------------|-------------------------------|-----------------------------|
|      |                     |            |                           |                          | max.                          |                             |
| 0201 | 0.6 ±0.03           | 0.3 ±0.03  |                           | 0.10                     | 0.20                          | 0.20                        |
| 0402 | 1.0 ±0.05           | 0.5 ±0.05  |                           | 0.15                     | 0.30                          | 0.40                        |
| 0603 | 1.6 ±0.10           | 0.8 ±0.10  |                           | 0.20                     | 0.60                          | 0.40                        |
| 0805 | 2.0 ±0.20           | 1.25 ±0.20 | Refer to<br>table 3 to 12 | 0.25                     | 0.75                          | 0.70                        |
| 1206 | 3.2 ±0.30           | 1.6 ±0.20  |                           | 0.25                     | 0.75                          | 1.40                        |
| 1210 | 3.2 ±0.30           | 2.5 ±0.20  |                           | 0.25                     | 0.75                          | 1.40                        |
| 1812 | 4.5±0.40            | 3.2±0.40   |                           | 0.25                     | 0.75                          | 2.20                        |

## OUTLINES



З

24

Product specification

| Table 2 | For outlines see | fig. 3 |
|---------|------------------|--------|
| TYPE    | 0508             |        |
|         | (4 X 0402)       | (4 X ( |

| TYPE                   | 0508<br>(4 X 0402) | 0612       |  |  |
|------------------------|--------------------|------------|--|--|
|                        | (4 ^ 0402)         | (4 X 0603) |  |  |
| L (mm)                 | 2.0 ±0.15          | 3.2 ±0.15  |  |  |
| W (mm)                 | 1.25 ±0.15         | 1.60 ±0.15 |  |  |
| T <sub>min.</sub> (mm) | 0.50               | 0.70       |  |  |
| T <sub>max.</sub> (mm) | 0.70               | 0.90       |  |  |
| A (mm)                 | 0.28 ±0.10         | 0.4 ±0.10  |  |  |
| B (mm)                 | 0.2 ±0.10          | 0.3 ±0.20  |  |  |
| P (mm)                 | 0.5 ±0.10          | 0.8 ±0.10  |  |  |

## OUTLINES



| Product specification | 4  |
|-----------------------|----|
| to (20 )/             | 24 |

## CAPACITANCE RANGE & THICKNESS FOR NPO

| Table 3 | Sizes from 020 |          |         | -       |         |         |         |         |
|---------|----------------|----------|---------|---------|---------|---------|---------|---------|
| CAP.    | 0201           | 0402     | 0603    |         |         | 0805    |         |         |
|         | 25 V / 50 V    | 50 V     | 50 V    | 100 V   | 250 V   | 50 V    | 100 V   | 250V    |
| 0.2 pF  | 0.3±0.03       |          |         |         |         |         |         |         |
| 0.47 pF | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 0.56 pF | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 0.68 pF | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 0.82 pF | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| I.0 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| I.2 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 1.5 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 1.8 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 2.2 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 2.7 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 3.3 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 3.9 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 4.7 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 5.6 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 6.8 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 8.2 pF  | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 10 pF   | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 12 pF   | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 15 pF   | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 18 pF   | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 22 pF   | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 27 pF   | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 33 pF   | 0.3±0.03       | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 39 pF   |                | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 47 pF   |                | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 56 pF   |                | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 68 pF   |                | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 82 pF   |                | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |
| 100 pF  |                | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1 | 0.6±0.1 | 0.6±0.1 |

#### NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request



|        | Sizes from 0402 to |         |         |         |          |          |          |
|--------|--------------------|---------|---------|---------|----------|----------|----------|
| CAP.   | 0402               | 0603    |         |         | 0805     |          |          |
|        | 50 V               | 50 V    | 100 V   | 250 V   | 50 V     | 100 V    | 250 V    |
| 120 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.6±0.1  |
| 150 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.6±0.1  |
| 180 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.6±0.1  |
| 220 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.85±0.1 |
| 270 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.85±0.1 |
| 330 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.85±0.1 |
| 390 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.85±0.1 |
| 470 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  | 0.85±0.1 |
| 560 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.85±0.1 | 0.85±0.1 |
| 680 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.85±0.1 | 0.85±0.1 |
| 820 pF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 |         | 0.6±0.1  | 0.85±0.1 | 0.85±0.1 |
| I.0 nF | 0.5±0.05           | 0.8±0.1 | 0.8±0.1 |         | 0.6±0.1  | 0.85±0.1 | 0.85±0.1 |
| I.2 nF |                    |         |         |         | 0.85±0.1 | 0.85±0.1 |          |
| I.5 nF |                    |         |         |         | 0.85±0.1 | 0.85±0.1 |          |
| I.8 nF |                    |         |         |         | 0.85±0.1 | 0.85±0.1 |          |
| 2.2 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 2.7 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 3.3 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 3.9 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 4.7 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 5.6 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 6.8 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 8.2 nF |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |
| 10 nF  |                    |         |         |         | 1.25±0.2 | 1.25±0.2 |          |

## CAPACITANCE RANGE & THICKNESS FOR NPO

### NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request



Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

| Table 5 | Sizes from 120 | 06 to 1210 |          |          |          |          |          |          |          |
|---------|----------------|------------|----------|----------|----------|----------|----------|----------|----------|
| CAP.    | 1206           |            |          |          |          | 1210     |          |          |          |
|         | 50 V           | 100 V      | 250 V    | 500 V    | 630 V    | 50 V     | 100 V    | 250 V    | 500 V    |
| 10 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 | -        |          |          |          |
| 12 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 15 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 18 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 22 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 27 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 33 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 39 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 47 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 56 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 68 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 82 pF   | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 100 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 120 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 150 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 180 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 220 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 270 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 330 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 390 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 470 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 560 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 680 pF  | 0.6±0.1        | 0.6±0.1    | 0.6±0.1  | 0.6±0.1  | 1.25±0.2 |          |          |          |          |
| 820 pF  | 0.6±0.1        | 0.6±0.1    | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 |          |          |          |          |
| I.0 nF  | 0.6±0.1        | 0.6±0.1    | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |
| I.2 nF  | 0.6±0.1        | 0.6±0.1    | 0.85±0.1 |          |          | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |
| I.5 nF  | 0.6±0.1        | 0.6±0.1    | 0.85±0.1 |          |          | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |
| I.8 nF  | 0.6±0.1        | 0.6±0.1    |          |          |          | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |
| 2.2 nF  | 0.6±0.1        | 0.6±0.1    |          |          |          | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |          |
| 2.7 nF  | 0.6±0.1        | 0.6±0.1    |          |          |          | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |          |

## CAPACITANCE RANGE & THICKNESS FOR NPO

NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

Product specification  $\frac{6}{24}$ 

Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

| Table 6 |          | from 0201 | <u>छ । मादा</u><br>to 0603 |          | <u>112 222 112</u> |          |          |         |         |         |         |         |
|---------|----------|-----------|----------------------------|----------|--------------------|----------|----------|---------|---------|---------|---------|---------|
| CAP.    | 0201     | 50.14     | 0402                       |          | 25.14              | 50.)/    | 100.14   | 0603    |         | 25.14   | 50.)/   | 100.14  |
|         | 25V      | 50 V      | 10V                        | 16 V     | 25 V               | 50 V     | 100 V    | 10V     | 16 V    | 25 V    | 50 V    | 100 V   |
| 100 pF  | 0.3±0.03 | 0.3±0.03  |                            |          |                    |          |          |         |         |         |         |         |
| 150 pF  | 0.3±0.03 | 0.3±0.03  |                            |          |                    |          |          |         |         |         |         |         |
| 220 pF  | 0.3±0.03 | 0.3±0.03  | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 | 0.5±0.05 |         |         |         |         |         |
| 330 pF  | 0.3±0.03 | 0.3±0.03  | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 | 0.5±0.05 |         |         |         |         |         |
| 470 pF  | 0.3±0.03 | 0.3±0.03  | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 | 0.5±0.05 |         |         |         |         |         |
| 680 pF  | 0.3±0.03 | 0.3±0.03  | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 | 0.5±0.05 |         |         |         |         |         |
| I.0 nF  | 0.3±0.03 | 0.3±0.03  | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| I.5 nF  | 0.3±0.03 |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 | 0.5±0.05 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 2.2 nF  | 0.3±0.03 |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 3.3 nF  | 0.3±0.03 |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 4.7 nF  | 0.3±0.03 |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 6.8 nF  | 0.3±0.03 |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 10 nF   | 0.3±0.03 |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           | 0.5±0.05 |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 15 nF   |          |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 22 nF   |          |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 33 nF   |          |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 47 nF   |          |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |
| 68 nF   |          |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |         |
| 100 nF  |          |           | 0.5±0.05                   | 0.5±0.05 | 0.5±0.05           |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |         |
| 150 nF  |          |           |                            |          |                    |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |         |         |
| 220 nF  |          |           |                            |          |                    |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |         |         |
| 330 nF  |          |           |                            |          |                    |          |          | 0.8±0.1 | 0.8±0.1 |         |         |         |
| 470 nF  |          |           |                            |          |                    |          |          | 0.8±0.1 | 0.8±0.1 |         |         |         |
| 680 nF  |          |           |                            |          |                    |          |          | 0.8±0.1 | 0.8±0.1 |         |         |         |
| ΙµF     |          |           |                            |          |                    |          |          | 0.8±0.1 | 0.8±0.1 | 0.8±0.1 |         |         |

### CAPACITANCE RANGE & THICKNESS FOR X7R

### NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is on request



| Table 8<br>CAP. | Size 0805 | 0805     |          |          |                      |          |          |          |
|-----------------|-----------|----------|----------|----------|----------------------|----------|----------|----------|
| CAL.            |           | 10 V     | 16 V     | 25 V     | 50 V                 | 100 V    | 250 V    | 500 V    |
|                 | 1.0 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 |
|                 | I.5 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 |
|                 | 2.2 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 |
|                 | 3.3 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 |
|                 | 4.7 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 |
|                 | 6.8 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 1.25±0.2 |          |
|                 | 10 nF     | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 1.25±0.2 |          |
|                 | 15 nF     | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 1.25±0.2 |          |
|                 | 22 nF     | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 0.85±0.1 | 1.25±0.2 |          |
|                 | 33 nF     | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 1.25±0.2 |          |          |
|                 | 47 nF     | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1             | 1.25±0.2 |          |          |
|                 | 68 nF     | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1<br>1.25±0.2 | 1.25±0.2 |          |          |
|                 | 100 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1<br>1.25±0.2 | 1.25±0.2 |          |          |
|                 | 150 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2             |          |          |          |
|                 | 220 nF    | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2             |          |          |          |
|                 | 330 nF    | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2             |          |          |          |
|                 | 470 nF    | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2             |          |          |          |
|                 | 680 nF    | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2             |          |          |          |
|                 | ΙμF       | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2             |          |          |          |
|                 | 2.2 µF    | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |                      |          |          |          |

## CAPACITANCE RANGE & THICKNESS FOR X7R

### NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is on request

Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

| Table 9 | Size 1206 |          |          |          |          |          |          |
|---------|-----------|----------|----------|----------|----------|----------|----------|
| CAP.    | 1206      |          |          |          |          |          |          |
|         | 6.3 V     | 10V      | 16V      | 25V      | 50 V     | 100 V    | 250 V    |
| 22 nF   | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 |
| 33 nF   | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.60±0.2 |
| 47 nF   | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.60±0.2 |
| 68 nF   | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 1.60±0.2 |
| 100 nF  | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 1.60±0.2 |
| 150 nF  | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 1.25±0.2 |          |
| 220 nF  | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 1.25±0.2 |          |
| 330 nF  | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.60±0.2 | 1.60±0.2 |          |
| 470 nF  | 1.00±0.1  | 1.00±0.1 | 1.00±0.1 | 1.00±0.1 | 1.60±0.2 | 1.60±0.2 |          |
| 680 nF  | 1.15±0.1  | 1.15±0.1 | 1.15±0.1 | 1.60±0.2 | 1.60±0.2 | 1.60±0.2 |          |
| ΙµF     | 1.15±0.1  | 1.15±0.1 | 1.15±0.1 | 1.60±0.2 | 1.60±0.2 | 1.60±0.2 |          |
| 2.2 µF  | 1.60±0.2  | 1.60±0.2 | 1.60±0.2 | 1.60±0.2 | 1.60±0.2 | 1.60±0.2 |          |

## CAPACITANCE RANGE & THICKNESS FOR X7R

#### NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is on request

| C | Table 10<br>AP. | Size 1210 |          |          |          |          |          |          | 1812     |          |
|---|-----------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|
|   |                 | 6.3V      | 10 V     | 16 V     | 25 V     | 50V      | 100 V    | 250 V    | 50V      | 100V     |
|   | 100 nF          | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 |          |          |
|   | 150 nF          | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 1.25±0.2 |          |          |          |
|   | 220 nF          | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 1.25±0.2 |          |          |          |
|   | 330 nF          | 0.85±0.1  | 0.85±0.1 | 0.85±0.1 | 0.85±0.1 | 1.25±0.2 | 2.0±0.2  |          |          |          |
|   | 470 nF          | 1.25±0.2  | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 2.0±0.2  |          | 1.60±0.2 | 1.60±0.2 |
|   | 680 nF          | 1.25±0.2  | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 2.0±0.2  |          | 1.60±0.2 | 1.60±0.2 |
|   | ΙμF             | 1.25±0.2  | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 | 2.0±0.2  |          | 1.60±0.2 | 1.60±0.2 |
|   | 2.2 µF          |           |          |          |          | 2.0±0.2  | 2.0±0.2  |          |          |          |
|   | 4.7 µF          |           |          |          |          | 2.5±0.2  |          |          |          |          |

## CAPACITANCE RANGE & THICKNESS FOR X7R

## ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm



24

Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

## CAPACITANCE RANGE & THICKNESS FOR 4C-ARRAY

Table II Temperature characteristic material from NP0

| CAPACITANCE | 0508 (4 × 0402)<br>50 ∨ | 0612 (4 × 0603)<br>50 V |
|-------------|-------------------------|-------------------------|
|             |                         |                         |
| 10 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 15 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 18 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 22 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 33 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 39 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 47 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 56 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 68 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 82 pF       | 0.6±0.1                 | 0.8±0.1                 |
| 100 pF      | 0.6±0.1                 | 0.8±0.1                 |
| 120 pF      |                         | 0.8±0.1                 |
| 150 pF      |                         | 0.8±0.1                 |
| 180 pF      |                         | 0.8±0.1                 |
| 220 pF      |                         | 0.8±0.1                 |
| 270 pF      |                         | 0.8±0.1                 |
| 330 pF      |                         | 0.8±0.1                 |
| 390 pF      |                         | 0.8±0.1                 |
| 470 pF      |                         | 0.8±0.1                 |
| 560 pF      |                         |                         |
| 680 pF      |                         |                         |
| 820 pF      |                         |                         |
| I.0 nF      |                         |                         |

#### NOTE

Values in shaded cells indicate thickness class in mm



 $\frac{11}{24}$ 

Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

## CAPACITANCE RANGE & THICKNESS FOR 4C-ARRAY

| CAPACITANCE | 0508 (4 × 0402) |         |         | 0612 (4 × 0603) |         |         |
|-------------|-----------------|---------|---------|-----------------|---------|---------|
|             | 16 V            | 25 V    | 50 V    | 16 V            | 25 V    | 50 V    |
| 220 pF      | -               |         |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 330 pF      |                 |         |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 470 pF      |                 |         |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 680 pF      |                 |         |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| I.0 nF      | 0.6±0.1         | 0.6±0.1 | 0.6±0.1 | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| I.5 nF      | 0.6±0.1         | 0.6±0.1 |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 2.2 nF      | 0.6±0.1         | 0.6±0.1 |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 3.3 nF      | 0.6±0.1         | 0.6±0.1 |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 4.7 nF      | 0.6±0.1         | 0.6±0.1 |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 6.8 nF      | 0.6±0.1         | 0.6±0.1 |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 10 nF       | 0.6±0.1         | 0.6±0.1 |         | 0.8±0.1         | 0.8±0.1 | 0.8±0.1 |
| 15 nF       | 0.6±0.1         |         |         | 0.8±0.1         | 0.8±0.1 |         |
| 22 nF       | 0.6±0.1         |         |         | 0.8±0.1         | 0.8±0.1 |         |
| 33 nF       | 0.6±0.1         |         |         | 0.8±0.1         | 0.8±0.1 |         |
| 47 nF       | 0.6±0.1         |         |         | 0.8±0.1         | 0.8±0.1 |         |
| 68 nF       | 0.6±0.1         |         |         |                 |         |         |
| 100 nF      | 0.6±0.1         |         |         |                 |         |         |

#### NOTE

Values in shaded cells indicate thickness class in mm

Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

| Table 13     |                             |            |                  |                       |                  |                      |
|--------------|-----------------------------|------------|------------------|-----------------------|------------------|----------------------|
| SIZE<br>CODE | THICKNESS<br>CLASSIFICATION | TAPE WIDTH | Ø180 MN<br>Paper | 1 / 7 INCH<br>Blister | Ø330 MM<br>Paper | / 13 INCH<br>Blister |
| 0201         | 0.3 ±0.03 mm                | 8 mm       | 15,000           |                       | 50,000           |                      |
| 0402         | 0.5 ±0.05 mm                | 8 mm       | 10,000           |                       | 50,000           |                      |
| 0603         | 0.8 ±0.1 mm                 | 8 mm       | 4,000            |                       | 15,000           |                      |
|              | 0.6 ±0.1 mm                 | 8 mm       | 4,000            |                       | 20,000           |                      |
| 0805/0508    | 0.85 ±0.1 mm                | 8 mm       | 4,000            |                       | 15,000           |                      |
|              | 1.25 ±0.2 mm                | 8 mm       |                  | 3,000                 |                  | 10,000               |
|              | 0.6 ±0.1 mm                 | 8 mm       | 4,000            |                       | 20,000           |                      |
|              | 0.85 ±0.1 mm                | 8 mm       | 4,000            |                       | 15,000           |                      |
| 1206/0612    | 1.0/1.15 ±0.1 mm            | 8 mm       |                  | 3,000                 |                  | 10,000               |
|              | 1.25 ±0.2 mm                | 8 mm       |                  | 3,000                 |                  | 10,000               |
|              | 1.6 ±0.2 mm                 | 8 mm       |                  | 2,000                 |                  | 10,000               |
|              | 0.85 ±0.1 mm                | 8 mm       |                  | 4,000                 |                  | 10,000               |
| 1210         | 1.15 ±0.1 mm                | 8 mm       |                  | 3,000                 |                  | 10,000               |
|              | 1.25 ±0.2 mm                | 8 mm       |                  | 3,000                 |                  | 10,000               |
|              | 0.6 / 0.85±0.1 mm           | l2 mm      |                  | 2,000                 |                  |                      |
| 1812         | 1.15±0.1 mm                 | l2 mm      |                  | I ,000                |                  |                      |
|              | 1.25±0.2 mm                 | 12 mm      |                  | 1,000                 |                  |                      |

## THICKNESS CLASSES AND PACKING QUANTITY

### ELECTRICAL CHARACTERISTICS

### NP0/X7R DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

|             |                                                       |                       |               |                |                |                |                |                              | ALUE          |
|-------------|-------------------------------------------------------|-----------------------|---------------|----------------|----------------|----------------|----------------|------------------------------|---------------|
|             | acitance range<br>acitance tolera                     |                       |               |                |                |                |                | 0.2 pF to                    | 2.2 µF        |
| NF          |                                                       |                       |               |                |                |                |                |                              |               |
| INF         | •                                                     |                       |               |                |                |                |                | ±0.1 pF, ±0.25 pF, =         |               |
|             | <u>C ≥ 10 p</u>                                       | pr                    |               |                |                |                |                | ±1%, ±29                     |               |
| _X7         |                                                       |                       |               |                |                |                |                | ±5% <sup>(†)</sup> , ±10%    | , ±20%        |
|             | ipation factor (                                      |                       |               |                |                |                |                |                              |               |
| NF          |                                                       | C < 30 <sub>P</sub> F |               |                |                |                |                | ≤   / ( 400 +                | - 20C )       |
|             | (                                                     | C ≥ 30 pF             |               |                |                |                |                |                              | ≤0.1 %        |
| X71         | R 0201                                                | 0402                  | 0603          | 0805           | 1206           | 1210           | 1812           | 0508 0612<br>(Array) (Array) |               |
| ≤10V        |                                                       | 220pF to 100nF        | InF to IuF    | InF to 2.2uF   | 22nF to 2.2uF  | 100nFto luF    |                |                              | ≤ 5%          |
|             |                                                       |                       |               |                |                |                |                |                              | $\leq 10\%$   |
| 16V         |                                                       | 220pF to 22nF         | InF to 220nF  | InF to 470nF   | 22nF to IuF    | 100nF to 1uF   |                | InF to 10nF 220pF to 47      | ≤ 3.5%        |
|             |                                                       | 27nF to 100nF         | 470nF to IuF  | 680nF to 2.2uF | 2.2 uF         |                |                | I5nF to I00nF                | ≤ 5%          |
| 25V         | 100pF to 470pF                                        | 220pF to 10nF         | InF to 39nF   | InFto I80nF    | 22nF to 680nF  | 100nF to 1uF   |                | InF to 10nF 220pF to 47      | ≤ 2,5%        |
|             |                                                       | I 2nF to 27nF         | 47nF to 220nF | 220nF to 470nF | luF            |                |                |                              | ≤ 3.5%        |
|             | 560pF to 10nF                                         | 47nF to 100nF         | luF           | 680nF to IuF   | 2.2 uF         |                |                |                              | ≤ 5%          |
| 50V         | 100pF to 470pF                                        | 220pF to 10nF         | InF to 39nF   | InFto I80nF    | 22nF to 470nF  | 100nF to 1uF   | 470nF to IuF   | InF 220pF to 10              | ≤ 2,5%        |
|             |                                                       |                       | 47nF to 100nF | 220nF to 470nF |                |                |                |                              | ≤ 3.5%        |
|             |                                                       |                       |               | 680nF to IuF   | 680nF to 2.2uF | 2.2uF          |                |                              | ≤ 5%          |
|             | 560pF to InF                                          |                       |               |                |                | 4.7uF          |                |                              | ≤ 10%         |
| 100V        |                                                       | 220pF to 1.5nF        |               | InFto I00nF    |                | 100nF to 220nF | 470nF to TuF   |                              | ≤ 2,5%        |
|             |                                                       |                       | I 2nF to 47nF |                | 680nF to 2.2uF | 330nF to 2.2uF |                |                              | ≤ 5%          |
| 250V        |                                                       |                       |               | InF to 22nF    | 22nF to 100nF  | 100nF          |                |                              | ≤ 2.5%        |
| 500V        |                                                       |                       |               | InF to 4.7nF   |                |                |                |                              | ≤ 2.5%        |
| Insu<br>Max | lation resistanc<br>imum capacitar<br>pperature chara | nce change as a       | a function of | )              |                | IR ≥ 10 GS     | 2 or I.R × C 2 | ≥ 500 seconds whichever is   |               |
| (ten<br>NF  | •                                                     | acteristic/coeff      | icienty:      |                |                |                |                | 1.20                         | D D C 10 C    |
| X7          |                                                       |                       |               |                |                |                |                | ±.30 n                       | .0°/m<br>±15% |
|             |                                                       |                       |               |                |                |                |                |                              | ±13/6         |
| -           | erating tempera<br>20/X7R                             | ture range:           |               |                |                |                |                |                              |               |
|             |                                                       |                       |               |                |                |                |                | –55 °C to +                  | 125 °C        |

#### NOTE

I. Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales force before order

14

24

Product specification

Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

### SOLDERING RECOMMENDATION

Table 15

| SOLDERING<br>METHOD | SIZE<br>0402 | 0603     | 0805     | 1206     | ≥ 1210      |
|---------------------|--------------|----------|----------|----------|-------------|
| Reflow              | ≥0.1 µF      | ≥ 1.0 µF | ≥ 2.2 µF | ≥ 4.7 µF | Reflow only |
| Reflow/Wave         | < 0.1 µF     | < 1.0 µF | < 2.2 µF | < 4.7 µF |             |

## SOLDERING CONDITIONS

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202F-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 270 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

### TESTS AND REQUIREMENTS

Table 16 Test procedures and requirements

| TEST                         | TEST METH           | IOD   | PROCEDURE                                                                                                                                                                                                                                                                                                                                            | REQUIREMENTS                     |
|------------------------------|---------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Mounting                     | IEC 60384-<br>21/22 | 4.3   | The capacitors may be mounted on printed-circuit boards or ceramic substrates                                                                                                                                                                                                                                                                        | No visible damage                |
| Capacitance                  | IEC 60384-<br>21/22 | 4.5.1 | Class I:<br>At 20 °C, 24 hours after annealing<br>$f = 1 \text{ MHz}$ for $C \le 1 \text{ nF}$ , measuring at voltage 1 V <sub>rms</sub> at 20 °C<br>f = 1  KHz for $C > 1  nF$ , measuring at voltage 1 V <sub>rms</sub> at 20 °C<br>Class 2:<br>At 20 °C, 24 hours after annealing<br>f = 1  KHz, measuring at voltage 1 V <sub>rms</sub> at 20 °C | Within specified tolerance       |
| Dissipation<br>Factor (D.F.) | IEC 60384-<br>21/22 | 4.5.2 | Class I:<br>At 20 °C, 24 hours after annealing<br>$f = I \text{ MHz}$ for $C \le InF$ , measuring at voltage I V <sub>rms</sub> at 20 °C<br>f = I  KHz for $C > InF$ , measuring at voltage I V <sub>rms</sub> at 20 °C<br>Class 2:<br>At 20 °C, 24 hours after annealing<br>f = I  KHz, measuring at voltage I V <sub>rms</sub> at 20 °C            | In accordance with specification |
| Insulation<br>Resistance     | IEC 60384-<br>21/22 | 4.5.3 | At U <sub>r</sub> (DC) for I minute                                                                                                                                                                                                                                                                                                                  | In accordance with specification |

Phicomp Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

| TEST                            | TEST METHOD | PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | REQUIREMENTS                                                                                                                                                                                                      |
|---------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| remperature                     | 4.6         | Capacitance shall be measured by the steps shown in the following table.<br>The capacitance change should be measured after 5 min at each specified temperature stage.<br>$ \frac{\text{Step}  \text{Temperature}(^{\circ}\text{C})}{a  25\pm2} $ b Lower temperature $\pm 3^{\circ}\text{C}$<br>c $25\pm2$<br>d Upper Temperature $\pm 2^{\circ}\text{C}$<br>e $25\pm2$<br>(1) Class I<br>Temperature Coefficient shall be calculated from the formula as below<br>Temp, Coefficient = $\frac{C2 - CI}{CI \times \Delta T} \times 10^{6} \text{ [ppm/}^{\circ}\text{C}$ ]<br>C1: Capacitance at step c<br>C2: Capacitance at 125°C<br>$\Delta \text{T}$ : $100^{\circ}\text{C}(=125^{\circ}\text{C}-25^{\circ}\text{C})$<br>(2) Class II<br>Capacitance Change shall be calculated from the formula as below<br>$\Delta C = \frac{C2 - CI}{CI} \times 100^{\%}$<br>C1: Capacitance at step c<br>C2: Capacitance at step c | <pre><general purpose="" series=""> Class1:</general></pre>                                                                                                                                                       |
| High<br>Temperature<br>Exposure | AEC-Q200 3  | Unpowered ; 1000hours @ T=150° <b>C</b><br>Measurement at 24±2 hours after test conclusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No visual damage<br>$\Delta$ C/C :<br>Class I:<br>NP0: within ±0.5% or 0.5 pF<br>whichever is greater<br>Class2:<br>X7R: ±10%<br>D.F.:<br>within initial specified value<br>IR:<br>within initial specified value |

Product specification 17 Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

| TEST                             | TEST METH | IOD | PROCEDURE                                                                                                                                                                                           | REQUIREMENTS                                                                                                          |
|----------------------------------|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Temperature<br>Cycling           | AEC-Q200  | 4   | Preconditioning;<br>150 +0/–10 °C for 1 hour, then keep for                                                                                                                                         | No visual damage                                                                                                      |
|                                  |           |     | <ul> <li>24 ±1 hours at room temperature</li> <li>1000 cycles with following detail:</li> <li>30 minutes at lower category temperature</li> <li>30 minutes at upper category temperature</li> </ul> | $\Delta C/C$<br>Class I :<br>NP0: Within ±1% or 0.5pF,<br>whichever is greater.                                       |
|                                  |           |     | Recovery time 24 $\pm$ 2 hours                                                                                                                                                                      | Class2:<br>X7R: ±10%                                                                                                  |
|                                  |           |     | ,<br>,                                                                                                                                                                                              | D.F. meet initial specified value<br>IR meet initial specified value                                                  |
| Destructive<br>Physical Analysis | AEC-Q200  | 5   | I 0ea X 3 lots.<br>Note: Only applies to SMD ceramics.<br>Electrical test not required.                                                                                                             |                                                                                                                       |
| Moisture<br>Resistance           | AEC-Q200  | 6   | T=24 hrs/per cycle; 10 continuous cycles unpowered.<br>Measurement at 24 $\pm$ 2 hours after test condition.                                                                                        | No visual damage                                                                                                      |
|                                  |           |     |                                                                                                                                                                                                     | $\Delta$ C/C<br>NP0: Within ±3% or 3 pF,<br>whichever is greater<br>X7R: ±15%                                         |
|                                  |           |     |                                                                                                                                                                                                     | D.F.<br>Within initial specified value<br>IR<br>NP0: $\geq$ 10,000 M $\Omega$<br>X7R: Meet initial specified<br>value |



Phicomp Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

| TEST            | TEST METHOD | PROCEDURE                                                                                                                                                                                                                                                                                                                                                           | REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Biased Humidity | AEC-Q200 7  | <ul> <li>I. Preconditioning, class 2 only:</li> <li>150 +0/-10 °C /1 hour, then keep for</li> <li>24 ±1 hour at room temp</li> </ul>                                                                                                                                                                                                                                | No visual damage after<br>recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |             | <ol> <li>Initial measure:<br/>Parameter: IR<br/>Measuring voltage: 1.5V ± 0.1 VDC<br/>Note: Series with 100 KΩ &amp; 6.8 KΩ</li> <li>Test condition:<br/>85 °C, 85% R.H. connected with 100 KΩ resistor, applied<br/>1.5V/U<sub>r</sub> for 1,000 hours.</li> <li>Recovery:<br/>Class1: 6 to 24 hours<br/>Class2: 24 ±2 hours</li> <li>Final measure: IR</li> </ol> | Initial requirement:Class I:- Connected to 100 K $\Omega$ : $C \leq 10 \text{ nF}$ : I.R $\geq 10,000 \text{ M}\Omega$ or $C > 10 \text{ nF}$ : (I.R-100 K $\Omega$ ) × C $\geq 100s$ Connected to 6.8 K $\Omega$ : $C \leq 10 \text{ nF}$ : I.R $\geq 10,000 \text{ M}\Omega$ or $C > 10 \text{ nF}$ : (I.R-6.8 K $\Omega$ ) × C $\geq 100s$ .Class2:- Connected to 100 K $\Omega$ : $C \leq 25 \text{ nF}$ : I.R $\geq 4,000 \text{ M}\Omega$ or $C > 25 \text{ nF}$ : (I.R-100 K $\Omega$ ) × C $\geq 100s$ Connected to 6.8 K $\Omega$ : $C \leq 25 \text{ nF}$ : I.R $\geq 10,000 \text{ M}\Omega$ or $C > 25 \text{ nF}$ : (I.R-6.8 K $\Omega$ ) × C $\geq 100s$ .Final measurement:The insulation resistance shallbe greater than 0.1 time initialvalue. |

 Phicomp
 Product specification
 19

 Surface-Mount Ceramic Multilayer Capacitors
 Automotive grade
 NP0/X7R
 6.3 V to 630 V
 24

| TEST                  | TEST METH | HOD | PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operational Life      | AEC-Q200  | 8   | <ol> <li>Preconditioning, class 2 only:<br/>150 +0/-10 °C /1 hour, then keep for<br/>24 ±1 hour at room temp</li> <li>Initial measure:<br/>Spec: refer to initial spec C, D, IR</li> <li>Endurance test:<br/>Temperature: X7R: 125 °C<br/>Specified stress voltage applied for 1,000 hours:<br/>Applied 2.0 × U<sub>r</sub> for general products<br/>Applied 1.5 × U<sub>r</sub> for high cap. Products<br/>High voltage series follows with below<br/>stress condition:<br/>Applied 1.5 × Ur for 200V, 250V series<br/>Applied 1.5 × Ur for 500V, 630V series<br/>Applied 1.2 × Ur for 1KV, 2KV, 3KV series</li> <li>Recovery time: 24 ±2 hours</li> <li>Final measure: C, D, IR</li> <li>Note: If the capacitance value is less than the minimum value<br/>permitted, then after the other measurements have been<br/>made the capacitor shall be preconditioned according to "<i>IEC</i><br/>60384 4.1" and then the requirement shall be met.</li> </ol> | No visual damage<br>$\Delta C/C$ NP0: Within ±2% or 1 pF,<br>whichever is greater<br>X7R: ±15%<br>D.F.<br>NP0: $\leq 2 \times$ specified value.<br>X7R: $\leq 16V$ : $\leq 7\%$ or specified<br>value whichever is greater<br>$\geq 25V$ : $\leq 5\%$ or specified<br>value whichever is greater<br>IR<br>NP0: $\geq 4,000 \text{ M}\Omega \text{ or IR} \times C_r \geq$<br>40s whichever is less<br>X7R: $\geq 1,000 \text{ M}\Omega \text{ or IR} \times C_r \geq$<br>50s whichever is less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| External Visual       | AEC-Q200  | 9   | Any applicable method using × 10 magnification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In accordance with specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Physical<br>Dimension | AEC-Q200  | 10  | Verify physical dimensions to the applicable device specification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In accordance with specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mechanical<br>Shock   | AEC-Q200  | 13  | Three shocks in each direction shall be applied along the three<br>mutually perpendicular axes of the test specimen (18 shocks)<br>Peak value: 1,500 g's<br>Duration: 0.5 ms<br>Velocity change: 15.4 ft/s<br>Waveform: Half-sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{tabular}{l} \Delta C/C \\ NP0: Within \pm 0.5\% \mbox{ or } 0.5 \mbox{ pF,} \\ \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \\ X7R: \pm 10\% \\ \end{tabular} \\ ta$ |
| Vibration             | AEC-Q200  | 14  | 5 g's for 20 minutes, 12 cycles each of 3 orientations.<br>Note:<br>Use 8'' × 5'' PCB. 0.31'' thick 7 secure points on one long side<br>and 2 secure points at corners of opposite sides. Parts<br>mounted within 2'' from any secure point. Test from<br>10-2000 Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta$ C/C<br>NP0: Within ±0.5% or 0.5 pF,<br>whichever is greater<br>X7R: ±10%<br>D.F: meet initial specified value<br>IR meet initial specified value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| YAGEO Phicomp |
|---------------|
|---------------|

| TEST                            | TEST METH      | HOD | PROCEDURE                                                                                                                                                                                                                                       | REQUIREMENTS                                                                                           |  |
|---------------------------------|----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Resistance to<br>Soldering Heat | AEC-Q200 15    |     | Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for $24 \pm 1$<br>hours at room temperature<br>Preheating: for size $\leq 1206$ : $120$ °C to $150$ °C for 1 minute<br>Preheating: for size $> 1206$ : $100$ °C to $120$ °C for 1 minute | Dissolution of the end face<br>plating shall not exceed 25% c<br>the length of the edge<br>concerned   |  |
|                                 |                |     | and 170 °C to 200 °C for 1 minute<br>Solder bath temperature: 260 ±5 °C<br>Dipping time: 10 ±0.5 seconds<br>Recovery time: 24 ±2 hours                                                                                                          | $\Delta C/C$<br>Class1:<br>NP0: Within ±1% or 0.5 pF,<br>whichever is greater.<br>Class2:<br>X7R: ±10% |  |
|                                 |                |     |                                                                                                                                                                                                                                                 | D.F. within initial specified value                                                                    |  |
|                                 |                |     |                                                                                                                                                                                                                                                 | IR within initial specified value                                                                      |  |
| Thermal Shock                   | Shock AEC-Q200 |     | 1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 $\pm$ 1 hour at room .                                                                                                                                                | No visual damage                                                                                       |  |
|                                 |                |     | <ul> <li>2. Initial measure:</li> <li>Spec: refer to initial spec C, D, IR</li> <li>3. Rapid change of temperature test:</li> </ul>                                                                                                             | $\Delta$ C/C<br>NP0: Within ±1% or 1 pF,<br>whichever is greater<br>X7R: ±15%                          |  |
|                                 |                |     | NP0/X7R: -55 °C to +125 °C; 300 cycles<br>15 minutes at lower category temperature; 15 minutes at<br>upper category temperature.                                                                                                                | D.F: meet initial specified value<br>IR meet initial specified value                                   |  |
|                                 |                |     | 4. Recovery time:<br>Class1: 6 to 24 hours<br>Class2: 24 ±2 hours                                                                                                                                                                               |                                                                                                        |  |
|                                 |                |     | 5. Final measure: C, D, IR                                                                                                                                                                                                                      |                                                                                                        |  |
| ESD                             | AEC-Q200       | 17  | Per AEC-Q200-002                                                                                                                                                                                                                                | A component passes a voltage<br>level if all components stressed<br>at that voltage level pass.        |  |
| Solderability                   | AEC-Q200       | 18  | Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.                                                                                                                                                      | The solder should cover over<br>95% of the critical area of each<br>termination.                       |  |
|                                 |                |     | Test conditions for lead containing solder alloy                                                                                                                                                                                                |                                                                                                        |  |
|                                 |                |     | Temperature: 235 ±5 °C<br>Dipping time: 2 ±0.2 seconds<br>Depth of immersion: 10 mm<br>Alloy Composition: 60/40 Sn/Pb<br>Number of immersions: 1                                                                                                |                                                                                                        |  |
|                                 |                |     | Test conditions for lead-free containing solder alloy<br>Temperature: 245 ±5 °C<br>Dipping time: 3 ±0.3 seconds<br>Depth of immersion: 10 mm<br>Alloy Composition: SAC305<br>Number of immersions: 1                                            |                                                                                                        |  |

Dec. 30, 2019 V.12

| TEST                           | TEST METH | IOD | PROCEDURE                                                                                                                                                                                                                                                                                                                                                                   | AC/C           Class I:           NP0: ±30 ppm/°C           Class2:           X7R: ±15%                                                       |                                         |                                         |                           |
|--------------------------------|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------|
| Electrical<br>Characterization | AEC-Q200  | 19  | Parametrically test per lot and sample size requirements,<br>summary to show Min, Max, Mean and Standard deviation at<br>room as well as Min and Max operating temperatures.<br>Class 1:<br>NP0: -55 °C to +125 °C<br>Normal temperature: 20 °C<br>Class 2:<br>X7R: -55 °C to +125 °C<br>Normal temperature: 20 °C                                                          |                                                                                                                                               |                                         |                                         |                           |
| Board Flex                     | AEC-Q200  | 21  | Part mounted on a 100 mm X 40 mm FR4 PCB board, which<br>is 1.6 ±0.2 mm thick and has a layer-thickness 35 µm ± 10<br>µm.<br>Part should be mounted using the following soldering reflow<br>profile.<br>Conditions:<br>Class I:<br>Bending 3 mm at a rate of 1 mm/s, radius jig 340 mm<br>Class2:<br>Bending 2 mm at a rate of 1 mm/s, radius jig 340 mm<br>Test Substrate: | No visib<br>ΔC/C<br>Class I :<br>NP0: W<br>whicheve<br>Class 2:<br>X7R: ± I<br>7<br>7<br>0201<br>0402<br>0603<br>0805<br>1206<br>1210<br>1808 | ithin ±<br>er is gre<br>0%              | 1% or (                                 |                           |
| Terminal<br>Strength           | AEC-Q200  | 22  | With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested.<br>This force shall be applied for 60+1 seconds.<br>Also the force shall be applied gradually as not to apply a shock to the component being tested.<br>* Apply 2N force for 0402 size.                                        | Magnifica<br>may be e<br>inspectio<br>integrity<br>terminals<br>junction.<br>Before, e                                                        | employ<br>on of th<br>of the<br>s and b | red for<br>le mech<br>device<br>ody/ter | hanical<br>body,<br>minal |

test, the device shall comply with all electrical requirements stated in this specification.

| <b>YAGEO</b> | Phicomp                                     |                  |         | Product specification | 22 |
|--------------|---------------------------------------------|------------------|---------|-----------------------|----|
|              | Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | NP0/X7R | 6.3 V to 630 V        | 24 |

| TEST           | TEST METHOD |    | PROCEDURE                                                                                                                                                                                                                                                                                                                                                  | REQUIREMENTS                                                                                                               |  |
|----------------|-------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Beam Load Test | AEC-Q200    | 23 | Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.                                                                                                                                                                                      | ≤ 0805<br>Thickness > 0.5mm: 20N<br>Thickness ≤ 0.5mm: 8N<br>≥ 1206<br>Thickness ≥1.25 mm: 54N<br>Thickness < 1.25 mm: 15N |  |
| Voltage Proof  |             |    | <ol> <li>Specified stress voltage applied for 1~5 seconds</li> <li>Ur ≤ 100 V: series applied 2.5 Ur</li> <li>100 V &lt; Ur ≤ 200 V series applied (1.5 Ur + 100)</li> <li>200 V &lt; Ur ≤ 500 V series applied (1.3 Ur + 100)</li> <li>Ur &gt; 500 V: 1.3 Ur</li> <li>Ur ≥ 1000 V: 1.2 Ur</li> <li>Charge/Discharge current is less than 50 mA</li> </ol> | No breakdown or flashover                                                                                                  |  |



| <b>YAGEO</b> | Phícomp                                     |                  |         | Product specificatio | n 23 |
|--------------|---------------------------------------------|------------------|---------|----------------------|------|
|              | Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | NP0/X7R | 6.3 V to 630 V       | 24   |

## <u>REVISION HISTORY</u>

| REVISION   | DATE          | CHANGE NOTIFICATION | DESCRIPTION                                                                                      |
|------------|---------------|---------------------|--------------------------------------------------------------------------------------------------|
| Version 11 | Jun. 29, 2018 | -                   | - Add 0201 NPO 25V/ 50V, 0.2pF to 33pF, Add 0402 NPO 50V 270pF to<br>InF, Add 0805 X7R 25V 2.2uF |
| Version 10 | May. 2, 2018  | -                   | - Add 0603 NPO 100V 820pF to 1nF,                                                                |
|            |               |                     | - Add 0805 NPO 50V to 100V, 1.2nF to 10nF,                                                       |
|            |               |                     | - Add 0805 X7R 16V 2.2uF, 50V 680nF to 1uF,                                                      |
|            |               |                     | - Add 1206 X7R 100V 330nF to 2.2uF, 250V 33nF to 100nF                                           |
| Version 9  | Mar. 22, 2018 | -                   | - Add 0402 X7R 100nF 25~50V                                                                      |
| Version 8  | Nov. 22, 2017 | -                   | - Add X7R/0201/25V/100pF~10nF                                                                    |
| Version 7  | Jul. 7, 2017  | -                   | - Add X7R/0805/330nF to 470nF/50V, X7R/1206/10uF/6.3V                                            |
| Version 6  | Mar. 31, 2017 | -                   | - Add NPO/0603/1nF/50V, X7R/0603/1uF/10V, X7R/0603/470nF/16V,<br>X7R/0603/220nF/25V              |
| Version 5  | Nov. 15, 2016 | -                   | - Add Soldering Condition                                                                        |
| Version 4  | Jun. 14, 2016 | -                   | - Add X7R/0805/2.2uF/10V and NPO/1206/1.2nF to 1.5nF/250V                                        |
| Version 3  | Jul. 21, 2015 | -                   | - Tests and Requirements update                                                                  |
| Version 2  | Jul. 17, 2014 | -                   | - Tests and Requirements update                                                                  |
| Version I  | Apr. 19, 2013 | -                   | - Capacitance range update                                                                       |
| Version 0  | Dec. 25, 2012 | -                   | - New                                                                                            |

Surface-Mount Ceramic Multilayer Capacitors Automotive grade NP0/X7R 6.3 V to 630 V

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.