

Surface Mount Ceramic Capacitor Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Surface Mount Ceramic Capacitor Products

Table of Contents

Automotive MLCC How to Order Part Number Explanation......1 Ge Ca **COG (NP0) Dielectric** General Specifications 3 AP Specifications and Test Methods 4 Ge Capacitance Range......5 Са **U Dielectric** ML RF/Microwave COG (NP0) Capacitors (RoHS) Ge General Information7 Sp Capacitance Range8 Са RF/Microwave COG (NP0) Capacitors (Sn/Pb) General Information 10 FL Capacitance Range 11 Ge RF/Microwave Automotive C0G (NP0) Capacitors (RoHS) AEC Q200 Qualified Ultra Low ESR 12 Ca Designer Kits 14 Ca Au X8R/X8L Dielectric Pa Specifications and Test Methods 17 Lo Int **X7R Dielectric** LIC IDC Specifications and Test Methods 19 LG Hi **X7S Dielectric** AT Hi For Tin **X5R Dielectric** FLE Fo Capacitance Range...... 27 MI CD **Y5V Dielectric** CD Specifications and Test Methods 30 ML MN MLCC Gold Termination – AU Series Pa Em MLCC Tin/Lead Termination "B" (LD Series) Pa Specifications and Test Methods 40 Ba Capacitance Range...... 41 Ge Specifications and Test Methods 44 Capacitance Range...... 45 General Specifications 46 Su Specifications and Test Methods 47

neral Specifications
pacitance Range
C for COTC L High Boliobility Applications
S for COTS+ High Reliability Applications
neral Specifications
pacitance Range
LCC with FLEXITERM [®]
neral Specifications 62
ecifications and Test Methods63
pacitance Range
-
EXISAFE MLC Chips
neral Specifications and Capacitance Range
pacitor Array
pacitor Array (IPC)
tomotive Capacitor Array (IPC)
rt & Pad Layout Dimensions73
w Inductance Capacitors
roduction74
C (Low Inductance Chip Capacitors)76
C (InterDigitated Capacitors)80
A Low Inductance Capacitors
·
gh Temperature MLCCs
Series – 200°C & 250°C Rated
gh Voltage MLC Chips
600V to 5000V Applications
/Lead Termination "B" - 600V to 5000V Applications
EXITERM® - 600V to 5000V Applications 100
600V to 3000V Automotive Applications - AEC-Q200 105
L-PRF-55681/Chips
R01 thru CDR06 107
R31 thru CDR35 109
CC Medical Applications
113 A Series
ckaging of Chip Components
nbossed Carrier Configuration
per Carrier Configuration
aia Canaaitar Farmulaa
sic Capacitor Formulas121
neurol Description
neral Description122
rface Mounting Guide 127

General Specifications 50 Specifications and Test Methods51

X8R

X7R

X5R

How to Order Part Number Explanation

Commercial Surface Mount Chips

EXAMPLE: 08055A101JAT2A

* B, C & D tolerance for \leq 10 pF values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

High Voltage MLC Chips EXAMPLE: 1808AA271KA11A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

Not RoHS Compliant

For RoHS compliant products, please select correct termination style.

How to Order Part Number Explanation

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

COG (NP0) Dielectric **General Specifications**

RoHS

C0G (NP0) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 ±30ppm/°C which is less than ±0.3% C from -55°C to +125°C. Capacitance drift or hysteresis for C0G (NP0) ceramics is negligible at less than ±0.05% versus up to ±2% for films. Typical capacitance change with life is less than ±0.1% for COG (NP0), one-fifth that shown by most other dielectrics. COG (NP0) formulations show no aging characteristics.

PART NUMBER (see page 4 for complete part number explanation)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Insulation Resistance vs Temperature

10.000

Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - COG (NP0) vs X7R

COG (NP0) Dielectric

Specifications and Test Methods

	ter/Test	NP0 Specification Limits	Measuring (
	perature Range	-55°C to +125°C	Temperature C	
•	itance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% 1.0 kHz ± 10% fo Voltage: 1.0	r cap > 1000 pF Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated @ room tem	p/humidity
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and d to 50 mA Note: Charge device with for 500V d	ischarge current limited (max) 1 150% of rated voltage
	Appearance	No defects		
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Deflectio Test Time: 3	
Flexure	Q	Meets Initial Values (As Above)]V	
Stresses	Insulation Resistance	≥ Initial Value x 0.3	90 n	
Solde	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sold 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic	solder at 260°C for
Resistance to	Q	Meets Initial Values (As Above)	60sec- onds. Store at	room temperature
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	properties.	e measuring electrical
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roor	and measure after n temperature
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twic chamber set at	
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou Remove from test cha	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperatu before me	re for 24 hours
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	\leq ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	et at 85°C ± 2°C/ 85% ±
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidi (+48, -0) with rated	voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 ho	
	Dielectric Strength	Meets Initial Values (As Above)		

Capacitance Range

PREFERRED SIZES ARE SHADED

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SIZE		0101*	02			0402				0603						0805			1206						
Internals Opd 1 a 1 a 1000 Opd 1 a 1 a 1000 Internal of 1 a																										
CL Cargon (a) (b) (c) (sed								
With Mark (n) (0.001 + 0.000) (0.01 + 0.000) (0.01 + 0.00)	(L) Length																	8)								
Unit Unit 10 400 Unit 10 400 <thu< td=""><td>W) Width</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thu<>	W) Width																	0)								
UND UND UDD UDD <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>· ,</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>8)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · · · · · · · · · · · · · · · · · ·		· ,			<u> </u>												8)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(t) Terminal																	0)								
(pf) 10 8 A A C <td></td> <td></td> <td>16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>200</td> <td></td> <td>500</td>			16										200													500
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			B																							J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(pr)															-										J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		-		-				-	-	J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																										J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																										J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3.3	В				С	С	G	G	G	G							J	J						J
5.6 8 A A C																										J
6.8 8 A A C																										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.8	В	А	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		-								J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																										J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		15	В	А	A	С	С	С	G	G	G	G	G	J		J	J				J		J	J		J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																										J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																J		J								J
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														-		J		J							J	J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		-		-				-	-	J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		68	В			С	С	С	G	G	G	G	G	J												J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																-	-	-	-	-						J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			в	A	A																					J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		150				С	С	С	G	G	G	G	G	J	J			J		J	J	J	J		-	J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																										J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													G													J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		330				С	С	С	G							J										J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															-	- Ŭ	-			-	-		-	-	-	J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																										J
1200 Image: constraint of the second se														-						-			-	-	-	J
1800 2200 G D D D </td <td></td> <td>1200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td>G</td> <td></td> <td></td> <td>J</td> <td>J</td> <td>J</td> <td>J</td> <td>Р</td> <td>Р</td> <td>J</td> <td>J</td> <td>J</td> <td>J</td> <td>J</td> <td>J</td> <td>J</td>		1200							G	G	G			J	J	J	J	Р	Р	J	J	J	J	J	J	J
2200 2700 G </td <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>P</td>															-	-				-						P
2700 G G G G G G G P P P P P P J J M P Q P P 3300 G G G G G G G P																										P
3900 4700 6 6 6 6 9 <t< td=""><td></td><td>2700</td><td></td><td></td><td></td><td></td><td></td><td></td><td>G</td><td>G</td><td>G</td><td></td><td></td><td>Р</td><td>Р</td><td></td><td>Р</td><td></td><td></td><td>J</td><td>J</td><td>м</td><td>Р</td><td>Q</td><td></td><td>Р</td></t<>		2700							G	G	G			Р	Р		Р			J	J	м	Р	Q		Р
4700 G G G G G G G G G G G P P P P P P J J M P X <td></td> <td>P</td>																										P
5600 6800 8200 M P X																										X
8200 P X <td></td> <td>5600</td> <td></td> <td>М</td> <td></td> <td>Х</td> <td>Х</td> <td>Х</td>		5600																				М		Х	Х	Х
Cap 0.010 P </td <td></td> <td>Х</td>																										Х
(µF) 0.012 P P P P X<	Сар													P	P					-	P	P	-	× 1		\vdash
0.018 0.022 X	(μF)	0.012												Р	Р					х			х			
0.022 0.027 x			ļ !	\mathbf{x}		× ۱۸/		' <u> </u>																		
0.027 x <td></td> <td></td> <td>J-L</td> <td>/</td> <td>\sim</td> <td></td> <td>2</td> <td></td>			J-L	/	\sim		2																			
0.039 0.047 x <th< td=""><td>L</td><td>0.027</td><td></td><td>_</td><td>\mathbf{r}</td><td></td><td>) ÎT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>х</td><td>Х</td><td>x</td><td></td><td></td><td></td><td></td></th<>	L	0.027		_	\mathbf{r}) ÎT													х	Х	x				
0.047 X <td></td> <td></td> <td></td> <td></td> <td>1_</td> <td></td> <td></td> <td>-</td> <td></td> <td>Х</td> <td></td> <td></td> <td></td>					1_			-															Х			
0.068 0.082 0.1 1 1 2 50 16 25 50 16 25 50 16 25 50 16 25 50 16 25 50 100 200 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200 250 16 25 50 100 200				<u> </u>																						
0.082 0.1 WVDC 16 25 50 16 25 50 16 25 50 10 20 16 25 50 100 200 16 25 50 100 200 250 16 25 50 100 200 250 50		0.068		▲ †	1				İ	İ			İ	1												
WVDC 16 25 50 16 25 50 16 25 50 16 25 50 10 20 16 25 50 100 200 16 25 50 100 200 250 16 25 50 100 200 250 50				·				I												v	v	v				
	WVDC	0.1	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250				100	200	250	500

Letter	A	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.05 5)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PA	PER						EMB	OSSED			

PREFERRED SIZES ARE SHADED

SIZE				1210					1812		_		1825		1	2220			2225	
Solderin	g			Reflow Only	/				Reflow Onl	у			Reflow Onl	у		Reflow Onl	у	F	Reflow Only	í
Packagir			Pa	per/Embos					II Embosse		-		II Embosse			II Emboss			I Embossed	
(L) Length	mm (in.)		((3.20 ± 0.20 0.126 ± 0.00					4.50 ± 0.30 .177 ± 0.01				4.50 ± 0.30			5.70 ± 0.40			5.72 ± 0.25 225 ± 0.010	
W) Width	mm			2.50 ± 0.20					3.20 ± 0.20				6.40 ± 0.40			5.00 ± 0.40			5.35 ± 0.25	
w) width	(in.)		((0.098 ± 0.00					.126 ± 0.00				0.252 ± 0.01			.197 ± 0.01			250 ± 0.010	
(t) Terminal	mm (in.)		((0.50 ± 0.25 0.020 ± 0.01					0.61 ± 0.36 .024 ± 0.01				0.61 ± 0.36 0.024 ± 0.01			0.64 ± 0.39			0.64 ± 0.39 025 ± 0.01	
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
Сар	3.9																			
(pF)	4.7																			
	5.6 6.8																			
	8.2																			
	10	М	М	М	М	М	Р	Р	Р	Р	Р						7		1.0/	
	12	М	М	М	м	м	Р	Р	P	Р	Р					-		\frown	\sim	
	15 18	M	M	M M	M	M	P P	P P	P P	P P	P P					+		,)).‡⊤-	
	22	M	M	M	M	M	P	P	P	P	P									
	27	М	м	м	м	м	Р	Р	Р	Р	Р					L		-		
	33	М	М	М	М	М	Р	Р	P	Р	Р						_ [™] t		. 1	
	39 47	M P	M P	M	M P	M P	P	P P	P P	P P	P P									
	56	P	P	P P	P	P	P P	P P	P	P	P P					<u> </u>		L	<u>├</u>	<u> </u>
	68	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	82	P	P	P	P	P	P	P	P	P	P									L
	100 120	P P	P P	P P	P P	P	P P	P P	P P	P P	P P									
	120	P	P	P	P	P	P	P	P	P	P									
	180	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р			l	1					
	220	P	P	P	P	P	P	P	P	P	P									
	270 330	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	390	P	P	P	P.	P	P	P	P	P	P									
	470	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	560	P P	P P	P P	P P	P	P P	P	P P	P P	P P									
	680 820	P	P	P P		P	P	P P	P	P P	P									
	1000	P	P	P	P	P	P	P	P	P	P	М	М	М				М	М	Р
	1200	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	м	м	м				М	м	Р
	1500 1800	<u>Р</u> Р	P P	P P	P P	P P	P P	P P	P P	P P	P P	M	M M	M				M	M	P P
	2200	P	P	P	P P	P	P	P	P	P P	P	X	X	M				M	M	P
	2700	P	P	P	P	P	P	P	P	P	Q	x	x	м				М	M	P
	3300	Р	Р	Р	P	Р	Р	Р	Р	Р	Q	X	X	Х			Х	М	М	Р
	3900 4700	P P	P P	P P	P P	P	P P	P P	P P	P P	Q Y	X X	X X	X X	x	x	X X	M M	M M	P P
	5600	 Р	P	P P	P P	P	P P	P P	P P	P P	Y	X	x	X	X	X	X	M	M	P
	6800	Р	Р	Р	x	x	Р	Р	Q	Q	Y	x	x	х	x	X	x	М	м	Р
2	8200	P	P	P	X	X	P	P	Q	Q	Y	X	X	X	X	X	X	М	м	P
Cap (pF)	0.010 0.012	P X	P X	X X	X X	X X	P P	P P	Q Q	Q X	Y Y	X X	X X	X X	X X	X X	X X	M M	M M	P P
(Fr)	0.012	X	x	x	z	z	P	P	Q	x	Y	x	x	x	X	x	x	M	M	P Y
	0.018	Х	х	Z	Z		Р	Р	х	X	Y	Х	х	Х	X	X	Х	М	М	Y
	0.022	Х	X	Z	Z		P	P	X	X		X	X	X	X	X		м	Y	Y
	0.027	X X	Z Z	Z	Z		Q Q	X X	X X	Z Z		X X	X X	Y	X X	X X		P X	Y Y	Y Y
	0.033	z	Z	Z			x	x	z	Z		x			Ŷ			x	Y	Y
	0.047	Z	Z	z		ļ	х	х	Z	Z		x			Y			х	Z	
	0.068						Z	Z	Z						Z			X	Z	
	0.082						Z Z	Z Z	Z Z						ZZ			X Z	Z Z	
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
	SIZE			1210					1812				1825			2220			2225	
Letter	A	В	C		E	G		K		M	N	Р	Q			Y	Z	-		

Letter	A	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
-			PAP	PER						EMBO	SSED			

U Dielectric RF/Microwave COG (NP0) Capacitors (RoHS) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION

"U" Series capacitors are C0G (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

DIMENSIONS: INCHES (MILLIMETERS)

inches (mm)

Size	Α	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.022 (0.55mm) max	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91mm) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.040±0.005 (1.02±0.127)	0.020±0.010 (0.51±0.255)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.050±0.005 (1.27±0.127)	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

 Size 0402
 - 0.2 pF to 30 pF @ 1 MHz

 Size 0603
 - 1.0 pF to 100 pF @ 1 MHz

 Size 0805
 - 1.6 pF to 160 pF @ 1 MHz

 Size 1210
 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

 Size
 Working Voltage

 0402
 100, 50, 25 WVDC

 0603
 200, 100, 50 WVDC

 0805
 200, 100 WVDC

Voltage (DWV):

"R" significant figures.

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

- 0402 See Performance Curve, page 13
- 0603 See Performance Curve, page 13
- 0805 See Performance Curve, page 13
- 1210 See Performance Curve, page 13

Marking:

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

Military Specifications

Meets or exceeds the requirements of MIL-C-55681

Dielectric

1210 - 200, 100 WVDC

Working

U Dielectric **RF/Microwave C0G (NP0) Capacitors (RoHS)** Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

CAPACITANCE RANGE

Cap (pF)	Available		Si	ze		Cap (pF)	Available		Siz	ze		Con (nE)	Available		Siz	ze	
Сар (рг)	Tolerance	0402	0603	0805	1210	Cap (pr)	Tolerance	0402	0603	0805	1210	Cap (pF)	Tolerance	0402	0603	0805	1210
1.0	B,C,D	100V	200V	200V	200V	7.5	B,C,J,K,M	100V	200V	200V	200V	100	F,G,J,K,M	N/A	100V	200V	200V
1.1						8.2	1					110	.,.,.,.,.		50V		
1.2						9.1	B,C,J,K,M	↓				120			50V	↓	
1.3						10	F,G,J,K,M	100V				130			N/A	200V	
1.4						11	1	50V				140				100V	
1.5						12						150				↓	
1.6						13						160				100V	
1.7						15			+			180				N/A	
1.8						18			200V			200				l ì	
1.9						20			100V			220					
2.0						22						270					
2.1						24						300					
2.2						27		*				330					
2.4						30		50V				360					
2.7						33		N/A				390					*
3.0						36						430					200V 100V
3.3						39						470					
3.6 3.9						43						510					
						47						560					
4.3 4.7						51						620					
4.7 5.1						56						680					
5.6						68						750					
6.2	B,C,D					75 82						820					
6.8	B,C,J,K,M				↓	91						910					
0.0			· *		'	91	•	•	1	•	_	1000	F,G,J,K,M	•	1 1		

ULTRA LOW ESR, "U" SERIES

TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A

U Dielectric RF/Microwave C0G (NP0) Capacitors

120216

U Dielectric RF/Microwave COG (NP0) Capacitors (Sn/Pb) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION

"U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402, 0603, 0805, and 1210.

DIMENSIONS: INCHES (MILLIMETERS)

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

 Size
 Working Voltage

 0402
 50, 25 WVDC

 0603
 200, 100, 50 WVDC

0805 - 200, 100 WVDC 1210 - 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

- 0402 See Performance Curve, page 16
- 0603 See Performance Curve, page 16
- 0805 See Performance Curve, page 16
- 1210 See Performance Curve, page 16

Marking:

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

Military Specifications

Meets or exceeds the requirements of MIL-C-55681

U Dielectric RF/Microwave COG (NP0) Capacitors (Sn/Pb) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

CAPACITANCE RANGE

0 mm (mF)	Available		Si	ze		0 mm (mF)	Available		Si	ze		0-m (mF)	Available		Si	ze		0	Available		Si	ze	
Cap (pF)	Tolerance	LD02	LD03	LD05	LD10	Cap (pF)	Tolerance	LD02	LD03	LD05	LD10	Cap (pF)	Tolerance	LD02	LD03	LD05	LD10	Cap (pF)	Tolerance	LD02	LD03	LD05	LD10
0.2	B.C	50V	N/A	N/A	N/A	1.0	B,C,D	50V	200V	200V	200V	7.5	B,C,J,K,M	50V	200V	200V	200V	100	F,G,J,K,M	N/A	100V	200V	200
0.3						1.1						8.2	l l					110	.,0,0,1,0,1		50V		
0.4	+					1.2						9.1	B,C,J,K,M					120			50V	+	
0.5	B,C					1.3						10	F,G,J,K,M					130			N/A	200V	
0.6	B,C,D					1.4						11						140				100V	
0.7						1.5						12						150				+	
0.8	+					1.6						13						160				100V	
0.9	B,C,D	↓	+	+	+	1.7						15			+			180				N/A	
						1.8						18			200V			200					
						1.9						20			100V			220					
						2.0						22						270					
						2.1						24		I I				300					
						2.2						27 30		50V				330					
						2.4 2.7						30		N/A				360					
						3.0						36		111				390					200
A .						3.3						39						430					100
						3.6						43						470					
2 mg	Š.					3.9						47						510 560					
						4.3						51						620					
RoH	IS					4.7						56						680					
COMPLI						5.1						68						750					
						5.6	+					75						820					
						6.2	B,C,D					82						910					
						6.8	B,C,J,K,M	+	+	+	+	91	+	+	+	+	+	1000	F,G,J,K,M	+	+	+	↓

ULTRA LOW ESR, "U" SERIES

TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A

U Dielectric RF/Microwave Automotive COG (NP0) Capacitors (RoHS) AEC Q200 Qualified Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION

Automotive "U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.

DIMENSIONS: INCHES (MILLIMETERS)

Size	Α	В	С	D	E
0402	1.00±0.1 (0.039±0.004)	0.50±0.1 (0.020±0.004)	0.60 max (0.024)	N/A	N/A
0603	1.52±0.25 (0.060±0.010)	0.76±0.25 (0.030±0.010)	0.91 max (0.036)	0.25±0.13 (0.010±0.005)	0.76 min (0.030)

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

 Size
 Working Voltage

 0402
 50, 25 WVDC

 0603
 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve 0603 - See Performance Curve

Automotive Specifications

Meets or exceeds the requirements of AEC Q200

CAPACITANCE RANGE

	Available	Si	ze
Cap (pF)	Tolerance	0402	0603
0.2	B,C	100V	N/A
0.3			
0.4	♥		
0.5	B,C		
0.6	B,C,D		
0.7			
0.8	♥		
0.9	B,C,D		

	Available	S	ze	
Cap (pF)	Tolerance	0402	0603	Cap
1.0	B,C,D	100V	200V	
1.1				8
1.2				9
1.3				
1.4				
1.5				
1.6				
1.7				
1.8				
1.9				
2.0				
2.1				
2.2				:
2.4				
2.7				
3.0				
3.3				
3.6				
3.9				.
4.3				
4.7				
5.1	•			
5.6				
6.2	B,C,D			
		1		

	Available	S	ize]	
ap (pF)	Tolerance	0402	0603		Сар
7.5	B,C,J,K,M	100V	200V		1
8.2	*				1
9.1	B,C,J,K,M				1
10	F,G,J,K,M				1
11					1
12					1
13					1
15			•		1
18			200V		2
20			100V		2
22					2
24					3
27		V			3
30		50V			3
33		N/A			3
36					4
39					4
43					5
47					5
51					6
56					6
68					7
75					8
82	▼				9
01			'		10

	Available	Size										
Cap (pF)	Tolerance	0402	0603									
100	F,G,J,K,M	N/A	100V									
110			50V									
120			50V									
130			N/A									
140												
150												
160												
180												
200												
220												
270												
300												
330												
360												
390												
430												
470												
510												
560												
620												
680												
750												
820	. ↓											
910	,		•									
1000	F,G,J,K,M											

ULTRA LOW ESR, "U" SERIES

TYPICAL ESR vs. FREQUENCY

6.8

B,C,J,K,M

TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

U Dielectric Designer Kits Communication Kits "U" Series

"U" SERIES KITS

	04	402	
	Kit 50	000 UZ	
Cap. Value pF	Tolerance	Tolerance	
0.5 1.0		4.7 5.6	B (±0.1pF)
1.5 1.8	B (±0.1pF)	6.8 8.2	D (_0p.)
2.2	в (то.трг)	10.0	
2.4		12.0	(±5%)
3.0		15.0	(±070)
3.6			

***25 each of 15 values

0603

	Kit 40	00 UZ	
Cap. Value pF	Tolerance	Cap. Value pF	Tolerance
1.0		6.8	
1.2		7.5	B (±0.1pF)
1.5		8.2	
1.8		10.0	
2.0		12.0	
2.4	D (10.1-F)	15.0	
2.7	B (±0.1pF)	18.0	
3.0		22.0	J (±5%)
3.3		27.0	
3.9		33.0	
4.7]	39.0	
5.6]	47.0	

***25 each of 24 values

0805

	Kit 30	00 UZ					
Cap. Value pF	Tolerance	Tolerance					
1.0		15.0					
1.5		18.0					
2.2		22.0					
2.4		24.0					
2.7		27.0					
3.0		33.0					
3.3	B (±0.1pF)	36.0					
3.9		39.0	J (±5%)				
4.7		47.0					
5.6		56.0					
7.5		68.0					
8.2		82.0					
9.1		100.0					
10.0	1 (1 5 %)	130.0					
12.0	J (±5%)	160.0					

***25 each of 30 values

1210

	Kit 35	00 UZ						
Cap. Value pF	Tolerance	Cap. Value pF	Tolerance					
2.2		36.0						
2.7		39.0						
4.7		47.0						
5.1	B (±0.1pF)	51.0						
6.8		56.0						
8.2		68.0						
9.1		82.0						
10.0		100.0	J (±5%)					
13.0		120.0						
15.0		130.0						
18.0	J (±5%)	240.0						
20.0	J (±5%)	300.0						
24.0		390.0						
27.0		470.0						
30.0		680.0						

***25 each of 30 values

X8R/X8L Dielectric General Specifications

AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150°C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of \pm 15% between -55°C and +150°C. The X8L material has capacitance variation of \pm 15% between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Size		0603	0805	1206	1210
Solderin	g	Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave
Packagi	ng	All Paper	Paper/Embossed	Paper/Embossed	Paper/Embossed
(1) 1	mm	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.30 ± 0.4
(L) Length	(in)	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.130 ± 0.016)
(W) Width	mm	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20
	(in)	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)
(t) Terminal	mm	0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25
(i) rerminal	(in)	(0.014 ± 0.006)	(0.020 ± 0.010)	(0.020 ± 0.010)	(0.020 ± 0.010)

								X8	L									
	Size			0603			0805			12	06		1210					
S	Soldering			Reflow/Wave Reflow/Wave Reflow/Wa							/Wave			low/W				
	WVD		25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100\			
271	Cap 27		G	G														
331	(pF) 33		G	G	G	J	J	J										
471	47		G	G	G	J	J	J										
681	68		G	G	G	J	J	J										
102	100		G	G	G	J	J	J		J	J							
152	150	2	G	G	G	J	J	J		J	J	J						
182	180		G	G	G	J	J	J		J	J	J						
222	220	0	G	G	G	J	J	J		J	J	J						
272	270		G	G	G	J	J	J		J	J	J						
332	330	0	G	G	G	J	J	J		J	J	J						
392	390	0	G	G	G	J	J	J		J	J	J						
472	470	0	G	G	G	J	J	J		J	J	L						
562	560	0	G	G	G	J	J	J		J	J	J						
682	680	0	G	G	G	J	J	J		J	J	J						
822	820	0	G	G	G	J	J	J		J	J	J						
103	Cap 0.0	1	G	G	G	J	J	J		J	J	J						
123	(µF) 0.01	2	G	G		J	J	J		J	J	J						
153	0.015 G G			J	J	J		J	J	J								
183	0.01	B	G	G		J	J	J		J	J	J						
223	0.02	2	G	G		J	J	J		J	J	J						
273	0.02	7	G	G		J	J	J		J	J	J						
333	0.03	3	G	G		J	J	N		J	J	J						
393	0.03	9	G	G		J	J	N		J	J	J						
473	0.04	7	G	G		J	J	N		J	J	J						
563	0.05	6	G	G		J	J	N		J	J	J						
683	0.06		G	G		J	J	N		J	J	J						
823	0.08		G	G		J	J	N		J	J	J						
104	0.	1	G	G		J	J	N		J	J	М						
124	0.1	2	-			Ĵ	N			Ĵ	Ĵ	М						
154	0.1	5				J	N		J	J	J	Q						
184	0.1	8				N	N		J	J	J	Q						
224	0.2					N	N		Ĵ	Ĵ	Ĵ	Q						
274	0.2					N			J	M	M	ò						
334	0.3					N			J	M	M	ò						
394	0.3					N			M	M	P	Q						
474	0.4					N			M	M	P	Q						
684	0.6					N			M	M	P	Q						
824	0.8					N			M	M	P	Q						
105		1				N			M	M	P	Q Q						
155	1.								M	M		~						
225	2.								M	M				Z	Z			
475	۷.													Z				
106		+											Z	-				
	WVD		25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100			
	SIZE	<u> </u>	201	0603		201	0805	1000	101		06		101	1210	100			

														= AEC-0200
Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Y	Z	Qualified
Max.	0.33	0.56	0.71	0.9	0.94	1.02	1.27	1.4	1.52	1.78	2.29	2.54	2.79	
Thickness	(-0.013)	(-0.022)	(-0.028)	(-0.035)	(-0.037)	(-0.04)	(-0.05)	(-0.055)	(-0.06)	(-0.07)	(-0.09)	(-0.1)	(-0.11)	
			PAPER	·	·		·		EMBO	SSED				

APPLICATIONS FOR X8R AND X8L CAPACITORS

- · All market sectors with a 150°C requirement
- Automotive on engine applications
- Oil exploration applications
- Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
 - Water pump
 - Hybrid commercial applications
 - Emergency circuits
 - Sensors
 - Temperature regulation

ADVANTAGES OF X8R AND X8L MLC CAPACITORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- Application Engineering
- Application Support

X8R/X8L Dielectric

X8R/X8L Dielectric

Specifications and Test Methods

Parame	ter/Test	X8R/X8L Specification Limits	Measuring Conditions							
Operating Tem	•	-55°C to +150°C	Temperature C	cycle Chamber						
Сарас	itance	Within specified tolerance	Freg.: 1.0 k	(Hz ± 10%						
Dissipatio	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.5% for 25V DC and 16V DC rating	Voltage: 1.0							
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 120 ± 5 @ room temp/humidity							
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% of rated volta 1-5 seconds, w/charge and discharge of limited to 50 mA (max) Note: Charge device with 150% of rated for 500V devices.							
	Appearance	No defects	_ Deflectio	n. 2mm						
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3							
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)								
	Insulation Resistance	≥ Initial Value x 0.3	90	mm						
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo 0.5 sec							
	Appearance	No defects, <25% leaching of either end terminal								
	Capacitance Variation	≤ ±7.5%								
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutection 60 seconds. Store at 24 ± 2 hours before i	room temperature for						
	Insulation Resistance	Meets Initial Values (As Above)	properties.							
	Dielectric Strength	Meets Initial Values (As Above)								
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes						
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes						
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes						
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes						
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro							
	Appearance	No visual defects	-							
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 test chamber set							
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hot							
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h							
	Dielectric Strength	Meets Initial Values (As Above)								
	Appearance	No visual defects	-							
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi							
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.						
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours befor measuring							
	Dielectric Strength	Meets Initial Values (As Above)								

100917

X7R Dielectric General Specifications

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.

Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.

X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

10

.01

100

Frequency, MHz

1,000

X7R Dielectric Specifications and Test Methods

		X7R Specification Limits	Measuring Conditions								
		-55°C to +125°C	Temperature	Cycle Chamber							
·		Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10µF, 0.5Vrm @ 120Hz								
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity								
Dielectri	c Strength	No breakdown or visual defects	seconds, w/charge and to 50 m Note: Charge device wi	% of rated voltage for 1-5 discharge current limited IA (max) th 150% of rated voltage / devices.							
	Dissipation Factor Insulation Resistance Diderability Appearance Capacitance Variation Dissipation Factor Dissipation Factor Dielectric Strength Appearance Capacitance Variation Dissipation Resistance Dissipation Resistance Dislectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dielectric Strength Appearance Capacitance Variation Resistance Dislectric Strength Appearance Capacitance Variation Resistance Dissipation Factor Insulation Resistance	No defects									
Resistance to		≤ ±12%	Deflection: 2mm								
Flexure Stresses		Meets Initial Values (As Above)	Test Time:	30 seconds							
		≥ Initial Value x 0.3									
Solde	rability	\ge 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds								
		No defects, <25% leaching of either end terminal									
		≤ ±7.5%									
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	seconds. Store at room	solder at 260°C for 60 m temperature for 24 ±							
oolder meat		Meets Initial Values (As Above)	2hours before measuri	ng electrical properties.							
		Meets Initial Values (As Above)									
		No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes							
	Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes							
Thermal Shock	Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes							
	Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes							
	Strength	Meets Initial Values (As Above)		nd measure after 24 ± 2 n temperature							
		No visual defects	-								
	Variation	≤ ±12.5%	test chamber set at 125	rated voltage (\leq 10V) in 5°C \pm 2°C for 1000 hours							
	Factor	≤ Initial Value x 2.0 (See Above)	, ,	8, -0)							
Load Life		≥ Initial Value x 0.3 (See Above)	but there are exceptions	est voltage will be 2xRV s (please contact AVX for on exceptions)							
	Dielectric Strength	Meets Initial Values (As Above)	Remove from test cham	ber and stabilize at room hours before measuring.							
	Appearance	No visual defects									
	Capacitance Variation	≤ ±12.5%	Store in a test chamber 5% relative humidity for	set at 85°C ± 2°C/ 85% ± 1000 hours (+48, -0) with							
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	rated volta	ige applied.							
runnuty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature and humidi	er and stabilize at room ty for 24 ± 2 hours before							
	Dielectric Strength	Meets Initial Values (As Above)	measuring.								

PREFERRED SIZES ARE SHADED

SIZE		0101*			0201			1		04	102						0	603							C	805								120	06				
Soldering		Reflow Only		Ref	low C	Dnly			F	Reflov	v/Wa	ve				F	Reflo	w/W	ave			Reflow/Wave							Reflow/Wave										
Packaging		Paper/ Embossed		AI	l Pap	er				All F	Paper						All	Pape	er					Pa	aper/	Embo	ssed					-	Pap	er/En	nboss	sed			
(L) Length mr (in		0.40 ± 0.02 0.016 ± 0.0008)	(0 ± 0 4 ± 0)				± 0.10 ± 0.00		-				1.60					2.01 ± 0.20 (0.079 ± 0.008)												: 0.30 : 0.01					
W) Width mr (in		0.20 ± 0.02 0.008 ± 0.0008)	(0 ± 0 1 ± 0)				± 0.10 ± 0.00						0.81).032							(5 ± 0.2 9 ± 0.0								1.60 ± 063 ±	0.30 0.01	2)			
(t) Terminal mr (in		0.10± 0.04 0.004 ± 0.0016)	(5 ± 0 6 ± 0)				± 0.1 ± 0.00			0.35 ± 0.15 (0.014 ± 0.006)							0.50 ± 0.25 (0.020 ± 0.010)								0.50 ± 0.25 (0.020 ± 0.010)										
WVDC		16	6.3	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500	
Cap 100 10	1	В	А	Α	Α	A	A	С	С	С	С	С	С	G	G	G	G	G	G	J	J													G	G	N	Ν	N	
(pF) 150 15	1	В	А	Α	А	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J									G	G	G	G	G	G	N	Ν	Ν	
220 22	_	В	Α	Α	А	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J	E	E	E	E	E	E	E	J	J	J	J	J	J	J	N	N	Р	
330 33		В	Α	Α	Α	A	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р	
470 47	_	В	Α	Α	Α	Α	A	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	Ν	Р	
680 68	_	В	Α	Α	Α	Α	A	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р	
1000 10	_	В	A	Α	A	A	A	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р	
1500 15	_		A	A	A	A	<u> </u>	C	C	C	C	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P	
2200 22			A	A	A	A	-	C	C	C	C	C	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P	
3300 333			A	A	A	A	-	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р	
3900 393 4700 473			A	A	A	A	-		0				0	0	0	0		0	0															H		NI	N	Р	
			A	A	A	A	-	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	P	
5600 563	_		A	A	A	A							0	0	0	0		0	0			<u> </u>						D	Р					\vdash		NI	N	Р	
6800 68 Cap 0.01 10	_		A A	A	A A	A	-	C C	C C	C C	C C	C C	C C	G G	G G	G G	G G	G G	G G	J J	J		J	J J	J	J	J J	P P	P	J J	J	J	J	J J	J J	N N	N N	P	
(µF) 0.012 12	_		A	A	A	A	-				U		U	G	G	G	G	6	G	J	J		J	J	J	J	J	Р	Р	J	J	J	J		J	IN	IN	Р	
0.012 12 0.015 15								С	С	С	С	E		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Q	
0.013 13	_							U			U	E		G	G	G	G	6	J	J	J		J	J	J	J	J	Р	P	J	J	J	J		J	IN	IN	ų	
0.018 18			Α	A	A			С	С	С	С	E		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	Р	Р	Q	
0.022 223	_		^		^							-		0	0	0	0	0	5	5	5		5	5	5	5	5			5	5	5	5		5			Q	
0.033 333	_							С	С	С	С	E		G	G	G	G	J	J	J			J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q	
0.039 393												-		0	0	0		0	0						0	•								F		, v		<u> </u>	
0.047 473	-							С	С	С	С	E		G	G	G	G	J	J	J			J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q	
0.068 68	-							C	C	C	C	E		G	G	G	G	J	J	J			J	J	J	J	P	P	-	J	J	J	J	J	P	Q	Q		
0.082 823	_							-	-	-	-	_		-	-	-	-	-	-	-			-	-	-	-		-		-	-	-	-	F					
0.1 104	_		Α					С	С	С	С	E		G	G	G	G	J	J	J			J	J	J	J	Р	Р		J	J	J	J	J	Р	Q	Q		
0.12 12	_							-												-			_																
0.15 15	4													G	G	G	J	J					N	N	Ν	Ν	Р			к	К	К	К	К	Q	Q	Q		
0.22 22	4							С	С	С	С			G	G	J	J	J			1		N	N	Ν	Ν	Р		İ –	к	К	К	К	К	Q	Q	Q		
0.33 334	4													J	J	J	J	J					Р	Р	Ρ	Р	Р			К	К	К	к	N	Q				
0.47 47	4							С	С					J	J	J	J	J					Р	Р	Ρ	Р	Р			М	М	М	М	X	Х				
0.68 68	4													J	J	J							Р	Р	Ρ					М	М	М	М	Х	Х				
1.0 10	5							С						J	J	J	J	J					Р	Р	Ρ	Р				М	М	М	М	Х	Х				
2.2 22	_													J	J	Κ							Р	Р	Ρ	Р				М	М	М	Х	Х	Х				
4.7 47	-													Κ									Ρ	Р	Ρ					Х	Х	Х	Х	Z					
10 10																						Р	Р	Р						Х	Х	Х	Х						
22 22	_																													Х	Х	Х		\square					
47 47	_																				L								<u> </u>					\square					
100 10	7																																						
WVDC SIZE		16 0101*	6.3		16		50	6.3				50	100	6.3	10	16		_	100	200	250	6.3	10	16			100	200	250	6.3	10	16	25			200	250	500	
					0201			1		0402	,						0	603								805								120	n4				

Letter	A	В	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
		•	PA	PFR	•					EMBO	SSED	•		

NOTE: Contact factory for non-specified capacitance values

*EIA 01005

**Contact Factory for Specifications

PREFERRED SIZES ARE SHADED

	SIZE					1210				l		18	12				1825				2220				2225	
	Soldering				R	eflow Or	nly					Reflow	w Only			R	eflow Or	nly		R	eflow Or	nly		R	eflow On	ily
I	Packaging				Pape	er/Embo	ssed			1		All Em	bossed			All	I Emboss	sed		AI	Embos:	sed		All	Emboss	ed
(L) Ler	ngth	mm (in.)				3.30 ± 0. 130± 0.0							± 0.40 ± 0.016)				4.50 ± 0.4 177 ± 0.0				5.70 ± 0.5 224 ± 0.0				.70 ± 0.4 224 ± 0.0	
W) Wi	dth	mm (in.)			(0.0	.50 ± 0.3)98 ± 0.0	012)					(0.126	± 0.40 ± 0.016)			(0.2	5.40 ± 0.4 252 ± 0.0	016)		(0.	5.00 ± 0.4 197 ± 0.0	016)		(0.2	.30 ± 0.4 248 ± 0.0	016)
(t) Ter		mm (in.)			(0.0	.50 ± 0.2)20 ± 0.0	010)					0.61 : (0.024 :	± 0.014)			(0.0	0.61 ± 0.3	014)		(0.	0.64 ± 0.3 025 ± 0.0	015)		(0.0	.64 ± 0.3)25 ± 0.0)15)
		VVDC	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
Сар	100	101																					L .	7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(pF)	150	151																					× 1	<		1 - = -
	220	221				К	К	к	м														L () 반 _
	330	331				К	К	к	м			N	N	N	N								1 -	$\overline{}$		_
	470	471				К	К	К	М			N	N	N	N								Ļ	t	1	_
	680	681				К	К	к	М			N	N	N	N										L	
	1000	102	К	к	к	К	К	к	м	N	N	N	N	N	N	X	X	Х		Х	X	X	Х	Х	Х	Х
	1500	152	K	к	к	K	К	К	М	N	N	N	N	N	N	X	X	Х		Х	X	X	X	Х	X	Х
	2200	222	К	К	К	К	К	К	М	N	N	N	N	N	N	X	X	Х		Х	X	X	Х	Х	Х	Х
	3300	332	к	К	К	к	к	к	Р	N	N	N	N	N	N	X	X	х		Х	X	X	Х	Х	Х	Х
	4700	472	К	К	К	К	К	к	Р	N	N	N	N	N	Р	X	X	х		Х	X	X	Х	Х	Х	Х
	6800	682	К	К	К	К	К	К	Р	N	N	N	N	N	Р	Х	X	Х		Х	X	X	Х	Х	Х	Х
Сар	0.01	103	К	К	К	К	К	К	Р	N	N	N	N	N	Р	Х	X	Х		Х	X	X	Х	Х	Х	Х
(µF)	0.015	153	К	К	К	К	К	K	Р	N	N	N	N	N	Р	X	X	Х		Х	X	X	Х	Х	Х	Х
	0.022	223	К	К	К	К	К	Р	Q	N	N	N	N	N	Р	X	X	Х		Х	X	X	Х	Х	Х	Х
	0.033	333	К	К	К	К	К	Р	Х	N	N	N	N	N	Х	X	X	Х		Х	X	X	Х	Х	Х	Х
	0.047	473	К	К	К	К	К	Р	Х	N	N	N	N	Р	Х	X	X	Х		Х	X	X	Х	Х	Х	Х
	0.068	683	K	К	К	К	К	Р	Х	N	N	N	N	Р	Х	Х	X	Х		Х	X	X	Х	Х	Х	Х
	0.1	104	K	К	К	К	К	Р	Х	N	N	N	Р	Р	Х	Х	X	Х		Х	X	X	Х	Х	Х	Х
	0.15	154	K	К	K	М	Р	Z	Z	N	N	N	Р	Р	Z	Х	X	Х		Х	X	X	Х	Х	Х	Х
	0.22	224	K	К	К	М	Р	Z		N	N	N	Р	Q	Z	X	X	Х		Х	X	X	Х	Х	X	Х
	0.33	334	K	K	K	М	Q	Z		N	N	N	Р	Х	Z	X	X	Х		Х	X	X	Х	Х	Х	Х
	0.47	474	М	М	М	Р	Q	Z		N	N	N	Q	Х	Z	X	X	Х		Х	X	X	Х	Х	Х	Х
	0.68	684	М	М	Р	Х	X	Z		Q	Q	Q	Q	Z		Х	X	Х		Х	X	X		Х	Х	Х
	1.0	105	Р	Р	Р	Х	Z			Q	Q	Q	X	Z		Х	X	Х		Х	X	X		Х	X	Х
	1.5	155	N	N	Z	Z	Z				Z	Z	Z			Х	X	Z		Х	X	Z		Х	Х	Z
	2.2	225	Х	Х	Z	Z	Z				Z	Z	Z			Х	X	Z		Х	X	Z		Х	Х	Z
	3.3	335	Х	X	Z	Z	Z				Z	Z	Z			х	X			Х	Z			х	Х	
	4.7	475	Z	Z	Z	Z	Z				Z	Z	Z			х	X			Z	Z			х	Х	
	10	106	Z	Z	Z	Z				Z	Z	Z				Z	Z			Z	Z			Z	Z	
	22	226	Z	Z	Z														Z							
	47	476	Z							İ			l –	İ			1	İ			1	1				
	100	107			İ	l				İ			1	İ	l	l	1	İ	l	İ	1	1				
	WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
	SIZE					1210						18	12				1825				2220				2225	

Letter	A	В	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
-			PA	PER						EMBO	SSED			

NOTE: Contact factory for non-specified capacitance values

080420

GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitance s within $\pm 22\%$ from -55° C to $\pm 125^{\circ}$ C. This capacitance change is non-linear.

Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.

X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

TYPICAL ELECTRICAL CHARACTERISTICS

X7S Dielectric Specifications and Test Methods

Parame	ter/Test	X7S Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance		
Dissipati	on Factor	≤ 5.0% for ≥ 100V DC rating ≤ 5.0% for ≥ 25V DC rating ≤ 10.0% for ≥ 10V DC rating ≤ 10.0% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	on: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	mm
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
itamaty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	nd humidity for
	Dielectric Strength	Meets Initial Values (As Above)		ore measuring.

X7S Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

SIZ	ZE	0402	0603	0805		1206		1210
Solde	ering	Reflow/Wave	Reflow/Wave	Reflow/Wave	Re	flow/W	ave	Reflow Only
Packa	aging	All Paper	All Paper	Paper/Embossed		er/Embo		Paper/Embossed
(L) Length	mm	1.00 ± 0.10	1.60 ± 0.15	2.01 ± 0.20		20 ± 0.		3.20 ± 0.20
(L) Length	(in.)	(0.040 ± 0.004)	(0.063 ± 0.006)	(0.079 ± 0.008)		26 ± 0.		(0.126 ± 0.008)
W) Width	mm	0.50 ± 0.10	0.81 ± 0.15	1.25 ± 0.20		60 ± 0.		2.50 ± 0.20
,	(in.)	(0.020 ± 0.004)	(0.032 ± 0.006)	(0.049 ± 0.008)		63 ± 0.		(0.098 ± 0.008)
(t)	mm	0.25 ± 0.15	0.35 ± 0.15	0.50 ± 0.25		50 ± 0.		0.50 ± 0.25
Terminal	(in.)	(0.010 ± 0.006)	(0.014 ± 0.006)	(0.020 ± 0.010)		20 ± 0.		(0.020 ± 0.010)
	WVDC	6.3	6.3	4	10	50	100	6.3
Сар	100							
(pF)	150							
	220				L			<u> </u>
	330					15	-	
	470				-	~~	<	
	680					(-		$\nabla \mathcal{V} =$
	1000					$ \leq $	\sim	
	1500						<u> </u>	Ĩ
	2200						1	1 _
	3300							
	4700							
	6800							
Сар	0.010							
(µF)	0.015							
	0.022							
	0.033	С						
	0.047	С						
	0.068	С						
	0.10	С					1	
	0.15							
	0.22							
	0.33		G					
	0.47		G					
	0.68		G					
	1.0		G			1		
	1.5	[N				
	2.2			N				
	3.3			N			1	
	4.7			N	Q		Q*	
	10							
	22						1	Z
	47							
	100							
	WVDC	6.3	6.3	4	10	50	100	6.3
	SIZE	0402	0603	0805		1206		1210

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.90	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.075)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

*Contact Factory for Specifications

X5R Dielectric General Specifications

GENERAL DESCRIPTION

- General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric

•

- Temperature variation of capacitance is within $\pm 15\%$ from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100µF)

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

121818

X5R Dielectric Specifications and Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring C	onditions
	perature Range	-55°C to +85°C	Temperature Cy	cle Chamber
Сарас	itance	Within specified tolerance	_	
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kl Voltage: 1.0\ For Cap > 10 μF, 0.9	/rms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rate secs @ room te	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and di to 50 mA	scharge current limited
	Appearance	No defects	Deflectior	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 m	im
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo ± 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic 60seconds. Store at room	n temperature for 24 \pm
oblact field	Insulation Resistance	Meets Initial Values (As Above)	2hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and hours at room	measure after 24 ± 2 temperature
	Appearance	No visual defects	Charge device with 1.5X	crated voltage in test
	Capacitance Variation	≤ ±12.5%	chamber set at 85°C ± (+48,-	2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Note: Contact factory for part numbers that are t	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	voltag	
	Dielectric Strength	Meets Initial Values (As Above)	Remove from test chambe temperature for	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber se 5% relative humidity for 10	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	rated voltage	e applied.
Trannuty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and 24 + 2 hours befor	l humidity for
	Dielectric Strength	Meets Initial Values (As Above)	- 24 ± 2 hours befo	ne measunny.

PREFERRED SIZES ARE SHADED

Case Size		01	01*	1		0201					04	02						0603							0805			
Soldering		Reflov	v Only		Re	flow O	nlv				Reflow	/Wave	e				Refl	ow/W	feve					Refl	ow/W	feve	_	
Packaging		Paper/Er				II Pap					All P							II Pap								ossed		
(L) Length	mm (in.)		± 0.02		0.6	50 ± 0. 24 ± 0.	09				1.00 :	± 0.20 ± 0.00	8)			-	1.6	50 ± 0. 53 ± 0.	.15					2.0)1 ± 0. 79 ± 0.	.20		
W) Width	mm (in.)	0.20 : (0.008 ±	± 0.02 0.0008)			30 ± 0. 11 ± 0.				(0		± 0.20 ± 0.00	8)					31 ± 0. 32 ± 0.							25 ± 0. 19 ± 0.			
(t) Terminal	mm (in.)	0.10 : (0.004 ±				15 ± 0. 06 ± 0.						± 0.15 ± 0.00	6)					35 ± 0. 14 ± 0.							50 ± 0. 20 ± 0.			
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100	101		В					Α																				
150	151		В					Α																				
220	221		B					A						С														
330	331		В					Α						C														
470	471		В					Α						C														
680	681		В					Α						C														
1000	102		B				Α	A						C		1												
1500	152	В	В				Α	Α						С														
2200	222	В	В			Α	Α	Α						С														
3300	332	В	В			Α	A	Α						С														
4700	472	В	В			Α	Α	Α					С								G							
6800	682	В	В			Α	A	Α					С				1				G							
Cap (µF) 0.01	103	В	В		1	Α	Α	Α					С			1			G	G	G							
0.015	150	В											С						G	G	G							
0.022	223	В			Α	A	Α	Α				С	С			1			G	G	G							N
0.033	333	В										С							G	G	G							N
0.047	473	В			Α	Α	Α	Α				С	С						G	G	G							N
0.068	689	В										С							G		G							N
0.1	104	В			Α	Α	Α	Α			С	С	С	С					G	G	G					N	N	N
0.15	154																		G							Ν	N	
0.22	224	В		Α	Α	A				C	С	С	С	С				G	G							N	N	N
0.33	334																	G	G							N		
0.47	474	В		Α	A				С	C	С	С	С	E				G	J							N	P	Р
0.68	684																	G								N		
1.0	105			Α	A	C	С		С	C	С	С	С		G	G	G	G	J	G	G				Ν	N	P	Р
1.5	155																											
2.2	225			С	С	С			С	С	С	С	С		G	G	J	J	J	K	K			N	N	Р	Р	Р
3.3	335									_					J	J	J						N	N				
4.7	475								E	E	E	E			J	J	J	G	G			N	P	J	N	N	P	Р
10	106								E	E	E				K	J	J	J				P	P	P	P	P	<u> </u>	
22	226								E	E					K	K	K					P	P	Р	Р	Р	<u> </u>	
47	476														K	K	L					Р	Р	Р			┝──	\vdash
100	107			L .																								
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size		01	D1*			0201					04	02						0603						_	0805			

Letter	A	В	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickne	0.33 s (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PA	PER						EMBC	SSED			

PAPER and EMBOSSED available for 01005 NOTE: Contact factory for non-specified capacitance values *EIA 01005

092220

Capacitance Range

PREFERRED SIZES ARE SHADED

Case Size					1206							1210							1812			
Soldering				Ref	low/W						Re	flow O	nly					Re	flow O	nly		
Packaging				Paper			ł					/Emb							Embos			
(L) Length	mm				20 ± 0.							20 ± 0.							50 ± 0.			
(L) Length	(in.)			(0.12	26 ± 0.	.016)					(0.12	26 ± 0.	016)					(0.17	77 ± 0.	012)		
W) Width	mm				50 ± 0.							50 ± 0.							20 ± 0.			
	(in.)				53 ± 0							98 ± 0.							26 ± 0.			
(t) Terminal	mm				50 ± 0							50 ± 0.							61 ± 0.			
	(in.)				$\frac{20 \pm 0}{100}$		65	50			<u> </u>	20 ± 0.	<u> </u>	0.5				<u> </u>	24 ± 0.	<u> </u>		50
Voltage:	101	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100	101																					
150	151																					
220	221																					
330	331																					
470	471																					
680	681																					<u> </u>
1000	102																					L
1500	152						<u> </u>												<u> </u>			<u> </u>
2200	222																					<u> </u>
3300	332																					<u> </u>
4700	472																					<u> </u>
6800	682																					
Cap (µF) 0.01	103																					
0.015	150																					
0.022	223																					
0.033	333																					
0.047	473																					
0.068	689																					
0.1	104																					
0.15	154																					
0.22	224																					
0.33	334																					
0.47	474					Q	Q							Х	Х							
0.68	684																					
1.0	105					Q	Q	Q					Х	X	Х							
1.5	155																					
2.2	225			Q	Q	Q	Q	Q					Х	Z	Z							
3.3	335		Q	Q																		
4.7	475	Х	Х	X	Х	Х	Х	Х			Z	Z	Z	Z	Z							
10	106	Х	Х	Х	Х	Х	Х	Х		Х	Х	Z	Z	Z	Z					Z		
22	226	Х	Х	Х	Х	Х			Z	Z	Z	Z	Z			Z	Z	Z	Z			
47	476	Х	Х	Х	Х				Z	Z	Z	Z	Z									
100	107	Х	Х						Z	Z												
Voltage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size					1206							1210							1812			

Letter	Α	В	С	E	G	J	К	М	N	Р	Q	X	Y	Z
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PA	PER						EMBO	SSED			

PAPER and EMBOSSED available for 01005

NOTE: Contact factory for non-specified capacitance values *EIA 01005

Y5V Dielectric General Specifications

GENERAL DESCRIPTION

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C. These characteristics make Y5V ideal for decoupling applications within limited temperature range.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros

Terminations T = Plated Ni and Sn

т

0

+20 +30 +40

Temperature Coefficient +20 +10 0 % Δ Capacitance -10 -20 -30 -40 -50 -60 -70 -80 -35 +5 +25 +45 +65 +85 +105 +125 -55 -15 Temperature °C

Insulation Resistance (Ohm-Farads) 10,000 1,00 100

+50

Temperature °C

+60 +70 +80 +90

Insulation Resistance vs. Temperature

Y5V Dielectric Specifications and Test Methods

Flexure Stresses Dissipation Factor Meets Initial Values (As Above) Insulation Resistance ≥ Initial Value x 0.1 Image: Stresses Solderability ≥ 95% of each terminal should be covered with fresh solder Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Resistance to Solder Heat Appearance No defects, <25% leaching of either end terminal values (As Above)	Parame	ter/Test	Y5V Specification Limits	Measuring	Conditions
Dissipation Factor ± 50% for 25W DC rating ± 20% for 16V DC rating ± 20% for 16V DC rating ± 20% for 16V DC rating ± 20% for 16V DC rating Free:10.14K± 10%. Vollage 1.0Vms & 2V For Cap > 10 µF, 0.5Vms @ 120Hz Insulation Resistance 10,000MD or 500M0. µF, whichever is less Charge device with rated voltage for 1.5 seconds, wicharge and discharge current @ 1000m temphunidity Resistance to Stresses Appearance Dissipation No breakdown or visual defects Charge device with 720% of rated voltage for 1.5 seconds, wicharge and discharge current winchever is less Resistance to Stresses Appearance Dissipation No defects Deflection: 270m 1.5 seconds Deflection: 270m 1.5 seconds Resistance to Stresses Appearance Unimited to 50 mA (max) Appearance No defects, 25% leaching of either end terminal fresh oldity Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Resistance to Solder Hett Appearance Gapacitance Keets Initial Values (As Above) Step 1: 30°C ± 2? 30 ± 3 minutes Resistance to Solder Itert Appearance Variation No visual defects Step 1: 30°C ± 2? 30 ± 3 minutes Resistance No visual defects Step 1: 30°C ± 2? 30 ± 3 minutes Load Appearance Variation No visual defects Step 1: 30°C ± 2? 30 ± 3 minutes	Operating Tem	perature Range	-30°C to +85°C	Temperature C	ycle Chamber
Dissipation Factor - 2 70 % for 25V DC rating * 5 0% for 15V DC rating * 12.5% for 15V DC rating * 12.5% for 15V DC rating Voltage: 1.2VM ms @ 12DHz Insulation Resistance 10.000MO or 500MO OR 500MO O	Capac	itance	Within specified tolerance	-	
Instantion resistance whichever is less © commemp/humidity Dielectric Strength No breakdown or visual defects Charge device with 20% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Resistance to Flexure Stresses Appearance No defects Deflection: 2mm Test Time: 30 seconds imm/acc Solde=bility 2 95% of each terminal should be covered with fresh solder Dip device in eutertic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Dip device in eutertic solder at 250°C for 6.0 solder Heat Resistance to Solde=rist Appearance No defects, <25% leaching of either end terminal capacitance Side - 100°C ± 2° 30 ± 3 minutes Resistance to Solder Heat Dissipation Factor Meets Initial Values (As Above) Dip device in eutertic solder at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 scored at 250°C for 6.0 score measuring electrical properties. Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Appearance No visual defects Step 2: Room Temp s minutes Capacitance Variation ± ±20% Step 4: Room Temp s minutes Dissipation Resistance Steritial Value	Dissipati	on Factor	\leq 7.0% for 25V DC rating \leq 9.0% for 16V DC rating	Voltage: 1.0	Vrms ± .2V
Dielectric Strength No breakdown or visual defects 1-5 seconds, wichtarge and discharge current limited to SD mA (max) Resistance to Fixure Stresses Appearance (apacitance Variation Factor Meets Initial Values (As Above) 1-5 seconds, wicharge and discharge current limited to SD seconds Solderability 2 95% of each terminal should be covered with resh solder Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Appearance No defects, <25% leaching of either end terminal fresh solder Dip device in eutectic solder at 260°C for 60 seconds. Store at noom temperature for 24 ± 2 % Resistance to Solder Heat Capacitance Variation ≤ ±20% Dip device in eutectic solder at 260°C for 60 seconds. Store at noom temperature for 24 ± 2 % Insulation Resistance Meets Initial Values (As Above) Dip device in eutectic alproperties. Sterngth Meets Initial Values (As Above) Step 1:-30°C ± 2° 30 ± 3 minutes Capacitance Variation ≤ ±20% Step 2: Room Temp ≤ 3 minutes Appearance No visual defects Step 1:-30°C ± 2° 30 ± 3 minutes Capacitance Variation ≤ ±20% Step 3: +85°C ± 2° 30 ± 3 minutes Load Life Discipation Factor Meets Initial Values (As Above) Step 3: +85°C ± 2°<	Insulation	Resistance			
Capacitance Variation ≤ ±30% Deficition The Time: 30 seconds Piexure Stresses Dissipation Pactor Meets Initial Values (As Above) Institution 1mm/sec Solderability ≥ 95% of each terminal should be covered with fresh solder Dip device in eutectic solder at 230 ± 5°C for 50 ± 0.5 seconds Resistance to Solder Heat Appearance Variation No defects, <25% leaching of either end terminal capacitance variation Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Resistance to Solder Heat Dissipation Factor Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance variation ≤ ±20% Step 2: Room Temp ≤ 3 minutes Dissipation Resistance Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Load Life Dissipation Resistance ≤ Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Load Life Dissipation Resistance ≤ Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours tofo	Dielectric	Strength	No breakdown or visual defects	1-5 seconds, w/charge	and discharge current
Resistance to Fixeure Stresses Compactance Pactor ≤ ±30% Test Time: 30 seconds 1mm/sec Dissipation Factor Meets Initial Values (As Above) Imm/sec Solderability ≥ 95% of each terminal should be covered with fresh solder Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Resistance to Solder Heat Capacitance Variation ≤ ±20% Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Resistance to Solder Heat Dissipation Factor Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance Variation ≤ ±20% Step 2: Room Temp ≤ 3 minutes Dissipation Resistance Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Capacitance Variation ≤ ±20% Step 4: Room Temp ≤ 3 minutes Factor Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Pacearance Variation ≤ ±30% Step 4: Room Temp ≤ 3 minutes Capacatanc		Appearance	No defects	Deflectio	n: 2mm
Stresses Displation Resistance Meets Initial Values (As Above) Insulation Resistance 2 Initial Values (As Above) Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Solderability 2 95% of each terminal should be covered with fresh solder Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Appearance No defects, <25% leaching of either end terminal Capacitance Sider Heat Displation Resistance Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Appearance Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance Variation s ± 20% Step 2: Room Temp s minutes Insulation Resistance Meets Initial Values (As Above) Step 4: Room Temp s minutes Disispation Factor Meets Initial Values (As Above) Step 4: Room Temp s minutes Disectric Strength Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature 24 ± 2 hours at room temperature 24 ± 2 hours	Resistance to		≤ ±30%		0 seconds
Resistance 2 initial value x 0.1 9 mm + Solderability 2 95% of each terminal should be covered with fresh solder Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds Appearance No defects, <25% leaching of either end terminal Capacitance Variation 5 ± 20% Dip device in eutectic solder at 230°C for 60 seconds. Store at room temperature for 24.1 hours before measuring electrical properties. Resistance to Solder Heat Diseipation Factor Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24.2 hours before measuring electrical properties. Appearance Meets Initial Values (As Above) Step 1: -30°C ± 2° 30 ± 3 minutes Appearance No visual defects Step 2: Room Temp s 3 minutes Using tion Factor Meets Initial Values (As Above) Step 4: Room Temp s 3 minutes Dielectric Meets Initial Values (As Above) Step 4: Room Temp s 3 minutes Dielectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Load Life Appearance No visual defects Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Load Life Appearance			Meets Initial Values (As Above)		
Solderability fresh solder for 5.0 ± 0.5 seconds Appearance No defects, <25% leaching of either end terminal Capacitance Solder Heat Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Resistance to Solder Heat Dissipation Factor Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Resistance Meets Initial Values (As Above) Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance s± 20% Step 1: -30°C ± 2° 30 ± 3 minutes Objectric Variation s± 20% Step 1: -30°C ± 2° 30 ± 3 minutes Insulation Resistance Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Insulation Resistance Meets Initial Values (As Above) Step 4: Room Temp s minutes Dislectric Variation s Initial Values (As Above) Step 4: Room Temp s minutes Dislectric Variation s Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Load Life Dislectric Variation s Initial Value x 0.1 (See Above) Remove from test chamber an			≥ Initial Value x 0.1	90 r	
Capacitance Variation \$ ±20% Dissipation Factor Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties. Dielectric Strength Meets Initial Values (As Above) Dissipation Resistance Distrength Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance Variation \$ ±20% Step 2: Room Temp \$ 3 minutes Insulation Resistance Meets Initial Values (As Above) Step 2: Room Temp \$ 3 minutes Dissipation Resistance Meets Initial Values (As Above) Step 4: Room Temp \$ 3 minutes Dislectric Strength Meets Initial Values (As Above) Step 4: Room Temp \$ 3 minutes Dislectric Dielectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Appearance No visual defects Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Insulation Resistance ± Initial Values (As Above) Remove from test chamber and stabilize at room temperature and stabilize at room temperature and humidity for 1000 hours (+48, -0) with rated voltage applied. Load Life App	Solder	rability			
Variation \$ ±20% Dissipation Meets Initial Values (As Above) Dip device in eutectic solder at 260°C for 60 seconds. Store at noom temperature for 24 ± 2 hours before measuring electrical properties. Insulation Resistance Meets Initial Values (As Above) Dielectric Dielectric Strength Meets Initial Values (As Above) Step 1: -30°C ± 2° 30 ± 3 minutes Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance ± ± 20% Step 2: Room Temp ≤ 3 minutes Dissipation Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Dissipation Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Dissipation Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Appearance No visual defects Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (±48, -0) Remove from test chamber and stabilize at roo measuring Insulation ≥ Initial Value x 0.1 (See Above) Remove from test chamber set at 85°C ± 2°C/for 1000 hours (±48, -0) Store in a test chamber set at 85°C ± 2°C/for 1000 hours (±48, -0) Load Li		Appearance	No defects, <25% leaching of either end terminal		
Resistance to Solder Heat Factor Meets Initial Values (As Above) seconds. Store at noom temperature for 24 ± 2 hours before measuring electrical properties. Insulation Resistance Meets Initial Values (As Above) seconds. Store at noom temperature for 24 ± 2 hours before measuring electrical properties. Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance Variation ≤ ±20% Step 2: Room Temp ≤ 3 minutes Factor Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Factor Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Factor Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Factor Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Factor Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at noom temperature Load Life Appearance No visual defects Capacitance ≤ ±30% Dissipation Resistance ≥ Initial Value x 0.1 (See Above) Remove from test chamber and stabilize at noon temperature for 24 ± 2 hours before measuring Load Humidity Appearance No visual defects<			≤ ±20%		
Institution Meets Initial Values (As Above) Dielectric Strength Meets Initial Values (As Above) Appearance No visual defects Capacitance Variation ≤ ±20% Thermal Shock Oissipation Factor Insulation Resistance Meets Initial Values (As Above) Step 2: Room Temp Variation ≤ 3 minutes Insulation Resistance Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Insulation Resistance Meets Initial Values (As Above) Step 4: Room Temp Variation ≤ 3 minutes Appearance No visual defects Capacitance Variation Factor ≤ ±30% Dissipation Factor ≤ Initial Values x 1.5 (See Above) Insulation Resistance ≥ Initial Value x 0.1 (See Above) Dielectric Strength Meets Initial Values (As Above) Dislegetric Variation ≥ Initial Values x 0.1 (See Above) Insulation Resistance ≤ ±30% Store in a test chamber set at 85°C ± 2°C (Se Store in a test chamber set at 85°C ± 2°C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Humidity Humidity Pinitial Value x 0.1 (See Above) <t< td=""><td>Resistance to Solder Heat</td><td></td><td>Meets Initial Values (As Above)</td><td>seconds. Store at room</td><td>temperature for 24 ± 2</td></t<>	Resistance to Solder Heat		Meets Initial Values (As Above)	seconds. Store at room	temperature for 24 ± 2
Strength Meets Initial Values (As Above) Appearance No visual defects Step 1: -30°C ± 2° 30 ± 3 minutes Capacitance Variation ≤ ±20% Step 2: Room Temp ≤ 3 minutes Dissipation Resistance Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Insulation Resistance Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Appearance Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Appearance Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Dislectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Load Life Appearance No visual defects Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Insulation Resistance ≥ Initial Value x 0.1 (See Above) Remove from test chamber set at 85°C ± 2°C / 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Humidity Dissipation Factor ≤ Initial Value x 1.5 (See above) Store in a test chamber set at 85°C ± 2°C / 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Humidity Dissipa			Meets Initial Values (As Above)	nours before measuring	g electrical properties.
Load Life Capacitance Variation ≤ ±20% Step 2: Room Temp ≤ 3 minutes Load Life Dissipation Factor Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Load Life Misulation Resistance Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Load Life Dielectric Strength Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Load Life Capacitance Variation Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Load Life Capacitance Variation ≤ ±30% Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Dissipation Factor ≤ Initial Value x 0.1 (See Above) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Dielectric Strength Meets Initial Values (As Above) Store in a test chamber set at 85°C ± 2°C (48% Variation Dissipation Factor ≤ Initial Value x 1.5 (See above) Store in a test chamber set at 85°C ± 2°C (48% S% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Humidity Dissipation Factor ≤ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and h			Meets Initial Values (As Above)		1
Variation Step 2: Room Temp S 3 minutes Dissipation Factor Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Insulation Resistance Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Dielectric Strength Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Appearance No visual defects Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Insulation Resistance ≥ Initial Value x 1.5 (See Above) Remove from test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Dielectric Strength Meets Initial Values (As Above) Remove from test chamber set at 85°C ± 2°C (48, -0) Appearance No visual defects Ster in a test chamber set at 85°C ± 2°C (48, -0) Dielectric Meets Initial Value x 1.5 (See above) Store in a test chamber set at 85°C ± 2°C (48, -0) Dissipation Factor ≤ Initial Value x 1.5 (See above) Store in a test chamber and stabilize at room temperature and humidity for 1000 hours (+48, -0) with rated voltage applied. Humidity Dissipation Factor <td></td> <td>Appearance</td> <td>No visual defects</td> <td>Step 1: -30°C ± 2°</td> <td>30 ± 3 minutes</td>		Appearance	No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes
Load Life Factor Meets Initial Values (As Above) Step 3: +85°C ± 2° 30 ± 3 minutes Load Life Insulation Resistance Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Load Life Dielectric Strength Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature Load Life Appearance No visual defects Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Load Life Insulation Factor ≤ Initial Value x 0.1 (See Above) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Load Life Appearance No visual defects Store in a test chamber set at 85°C ± 2°C for 1000 hours (+48, -0) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Store in a test chamber set at 85°C ± 2°C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Humidity Dissipation Factor ≤ Initial Value x 0.1 (See Above) Store in a test chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.			≤ ±20%	Step 2: Room Temp	≤ 3 minutes
Resistance Meets Initial Values (As Above) Step 4: Room Temp ≤ 3 minutes Dielectric Strength Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 ±2 hours at room temperature Appearance No visual defects Capacitance Variation ≤ ±30% Dissipation Factor ≤ Initial Value x 1.5 (See Above) Insulation Resistance ≥ Initial Value x 0.1 (See Above) Dielectric Strength Meets Initial Values (As Above) Dielectric Strength Meets Initial Values (As Above) Appearance No visual defects Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (±48, -0) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Dielectric Variation ≤ Initial Values (As Above) Appearance No visual defects Capacitance Variation ≤ ±30% Store in a test chamber set at 85°C ± 2°C/ 85% 5% relative humidity for 1000 hours (±48, -0) with rated voltage applied. Humidity Insulation Resistance ≥ Initial Value x 0.1 (See Above) Insulation Resistance ≥ Initial Value x 0.1 (See Above) Dielectric Meats Initial Values (As Above)	Thermal Shock		Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
Load Life Strength Meets Initial Values (AS Above) 24 ±2 hours at room temperature Load Life Appearance No visual defects Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (±48, -0) Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (±48, -0) Insulation ≥ Initial Value x 0.1 (See Above) Remove from test chamber and stabilize at room temperature for 24 ± 2 hours before measuring Diselectric Meets Initial Values (As Above) Store in a test chamber set at 85°C ± 2°C/s5% relative humidity for 1000 hours (±48, -0) Load Appearance No visual defects Store in a test chamber set at 85°C ± 2°C/85% 5% relative humidity for 1000 hours (±48, -0) with rated voltage applied. Humidity Dissipation Factor ≤ Initial Value x 1.5 (See above) Store in a test chamber and stabilize at room temperature and humidity for 1000 hours (±48, -0) with rated voltage applied. Humidity Dissipation Factor ≤ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.			Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
Load LifeCapacitance Variation $\leq \pm 30\%$ Charge device with twice rated voltage in test chamber set at $85^{\circ}C \pm 2^{\circ}C$ for 1000 hours (+48, -0)Load LifeDissipation Factor $\leq Initial Value x 1.5$ (See Above)Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuringLoad HumidityAppearanceNo visual defectsStore in a test chamber set at $85^{\circ}C \pm 2^{\circ}C$ / 85% 5% relative humidity for 1000 hours (+48, -0)Load HumidityDissipation Factor $\leq Initial Value x 1.5$ (See above)Store in a test chamber set at $85^{\circ}C \pm 2^{\circ}C$ / 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.Load HumidityDissipation Factor $\leq Initial Value x 0.1$ (See Above)Store in a test chamber and stabilize at room temperature and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.			Meets Initial Values (As Above)		
Load Life Variation ≤ ±30% Charge device with twice rated voltage in test chamber set at 85°C ± 2°C for 1000 hours (±48, -0) Insulation ≤ Initial Value x 0.1 (See Above) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Dielectric Meets Initial Values (As Above) Remove from test chamber set at 85°C ± 2°C for 1000 hours (±48, -0) Dielectric Meets Initial Values (As Above) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Load Appearance No visual defects Store in a test chamber set at 85°C ± 2°C/ 85% 5% relative humidity for 1000 hours (±48, -0) with rated voltage applied. Humidity Dissipation ≤ Initial Value x 1.5 (See above) Store in a test chamber and stabilize at room temperature and humidity for 1000 hours (±48, -0) with rated voltage applied. Load Dissipation ≤ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.			No visual defects	-	
Load Life Dissipation Factor ≤ Initial Value x 1.5 (See Above) for 1000 hours (+48, -0) Insulation Resistance ≥ Initial Value x 0.1 (See Above) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Dielectric Strength Meets Initial Values (As Above) Remove from test chamber and stabilize at roo temperature for 24 ± 2 hours before measuring Appearance No visual defects Capacitance Capacitance Variation ≤ ±30% Store in a test chamber set at 85°C ± 2°C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Buildion Factor ≤ Initial Value x 1.5 (See above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.		Variation	≤ ±30%		
Resistance ≥ Initial Value x 0.1 (See Above) Initial Value x 0.1 (See Above) Dielectric Strength Meets Initial Values (As Above) temperature for 24 ± 2 hours before measuring Appearance No visual defects Capacitance Variation ≤ ±30% Store in a test chamber set at 85°C ± 2°C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Dissipation Factor ≤ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.	Load Life	Factor	≤ Initial Value x 1.5 (See Above)		
Load Humidity Appearance No visual defects Capacitance Variation ≤ ±30% Dissipation Factor ≤ Initial Value x 1.5 (See above) Insulation Resistance ≥ Initial Value x 0.1 (See Above) Dielectric Meets Initial Values (As Above)		Resistance	≥ Initial Value x 0.1 (See Above)		
Load Humidity Capacitance Variation ≤ ±30% Store in a test chamber set at 85°C ± 2°C/ 85% Dissipation Factor ≤ Initial Value x 1.5 (See above) Store in a test chamber set at 85°C ± 2°C/ 85% Insulation Resistance ≤ Initial Value x 1.5 (See above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.			Meets Initial Values (As Above)		
Load Humidity Variation ≤ ±30% Store in a test chamber set at 85°C ± 2°C / 85% Dissipation Factor ≤ Initial Value x 1.5 (See above) 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Insulation Resistance ≥ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.			No visual defects	1	
Load Humidity Dissipation Factor ≤ Initial Value x 1.5 (See above) (+48, -0) with rated voltage applied. Insulation Resistance ≥ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.		Variation	≤ ±30%		
Insulation Resistance ≥ Initial Value x 0.1 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.			≤ Initial Value x 1.5 (See above)	(+48, -0) with rated	voltage applied.
Dielectric Meets Initial Values (As Above)			≥ Initial Value x 0.1 (See Above)	temperature an	d humidity for
			Meets Initial Values (As Above)		ore medouring.

PREFERRED SIZES ARE SHADED

SIZE		020	01	0402						06	03			0805				1206			1210			
Solderi	Soldering Reflow Only		Reflow/Wave				Reflow/Wave			F	Reflow/Wave			ReflowMfeve			e	F	Reflow/Wave		е			
Packag	ing	All Pa	aper	er		All Paper			All Paper			Pa	Paper/Embossed			Paper/Embossed			Paper/Embossed					
(I) Longth	mm	0.60 ± 0.09		1.00 ± 0.10			10		1.60 ± 0.15				2.01 ± 0.20			3.20 ± 0.20			3.20 ± 0.20					
(L) Length	(in.)	(0.024 ±	0.004)	(0.040 ± 0.004)					(0.063 ± 0.006)				(0	.079 :	± 0.00	8)	(0).126 ±	E 0.00	B)	(0	(0.126 ± 0.008)		8)
W) Width	mm	m 0.30 ± 0.09			0.		.10		.81 ± 0.15			1.25 :	± 0.20			1.60 ±	£ 0.20			2.50 :	± 0.20			
w) width	(in.)	(0.011 ±	0.004)		(0.0	20 ± 0.	.004)		(0).032 :	± 0.00	6)	(0	.049 :	± 0.00	8)	(0).063 ±	£ 0.00	B)	(0.098 ± 0.008)			8)
(t) Terminal	mm	0.15 ± 0.05		0.25 ± 0.15			15			0.35	± 0.15			0.50 :	± 0.25			0.50 ±	£ 0.25			.50 ±	0.25	
(t) remina	(in.)	(0.006 ±	0.002)		(0.0	10 ± 0.	006)	06)		0.014 :	4 ± 0.006)		(0	(0.020 ± 0.010)			(0).020 ±	: 0.010)		(0.020 ± 0.010)		0)	
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
Сар	820																				X		€ W	
(pF)	1000		Α																		<		5	\leq
	2200		Α																	(5		\mathcal{D}	ŢŢ
	4700		Α																			7		
Сар	0.010	A	Α																		-	Ť		
(µF)	0.022	A																		I	. '			I
	0.047	A				С																		
	0.10				С	C					G	G				К								
	0.22									G														
	0.33									G														
	0.47					С				G	G													
	1.0			С	С				G	G	J			Ν	N	N		М	М	М				Ν
	2.2				С				J					Ν	N				K	Q				
	4.7												Ν	Ν	N			Р	Q			N	Ν	
	10.0												Ν	Р			Q	Q	Х		Х	Q	Q	Z
	22.0																Q				Х	Z		
	47.0																							
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
SIZE		020	01			0402				06	03	_		08	05			12	06		1210			
Letter	A	C	E	_	G	J		K		M	N	_	P		Q	Х	_	Y		Z				
Max.	0.33	0.56	0.71	-	.90	0.94	_	1.02		.27	1.4	-	1.52		.78	2.29		2.54		79				
Thickness	(0.013)	(0.022)	(0.028)) (0.	035)	(0.03	37)	(0.040)	(0.	050)	(0.05	5) ((0.060)	(0.	070)	(0.09	0) (0	0.100)	(0.1	110)				
	_	PAPER							EMBOSSED															

060120

MLCC Gold Termination – AU Series

General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

AU03	Y	G	104	ĸ	A	7	2	A
Size AU02 - 0402 AU03 - 0603 AU05 - 0805 AU06 - 1206 AU10 - 1210 AU12 - 1812 AU13 - 1825 AU14 - 2225 AU16 - 0306 AU17 - 0508 AU18 - 0612	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NP0) = A X7R = C X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20%	Failure Rate A = Not Applicable	Terminations G*=1.9 μ" to 7.87 μ" 7 = 100 μ" minimum	Packaging 2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For Multiples*	Special Code A = Std. Product

* Contact factory for availability.

Capacitance Range (NP0 Dielectric)

PREFERRED SIZES ARE SHADED

SIZE		Ro	AU02		AU03 Reflow/Epoxy/				AU05 Reflow/Epoxy/						AU06 Reflow/Epoxy/						
Soldering		٧	Reflow/Epoxy/ Wire Bond*			Wire Bond*				V	vire Bond	l*		Wire Bond*							
Packaging			All Paper 1.00 ± 0.10		All Paper					er/Embo	Paper/Embossed										
(L) Length	mm (in.)	(0.040 ± 0.004)		1.60 ± 0.15 (0.063 ± 0.006)					.01 ± 0.2 079 ± 0.0			3.20 ± 0.20 (0.126 ± 0.008)									
W) Width	mm	0.50 ± 0.10		0.81 ± 0.15				.25 ± 0.2	1.60 ± 0.20												
	(in.) mm	(0.020 ± 0.004)			(0.032 ± 0.006)			(0.049 ± 0.008)						(0.063 ± 0.008) 0.50 ± 0.25							
(t) Terminal	(in.)	0.25 ± 0.15 (0.010 ± 0.006)			0.35 ± 0.15 (0.014 ± 0.006)			0.50 ± 0.25 (0.020 ± 0.010)								± 0.23 ± 0.010)					
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500		
Cap (pF)	0.5 1.0	C C	C C	C C	G G	G G	G G	GG	J	J	J	J	J	J	J	J	J J	J	J		
	1.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	1.5 1.8	С С	C C	C C	G G	G G	G	G	J	J J	J	J	J J	J	J	J	J	J	J		
	2.2	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	2.7	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	3.3 3.9	C C	C C	C C	G G	G G	G G	G G	J	J J	J	J	J J	J	J	J	J J	J	J		
	4.7	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	5.6	C C	C C	C C	G G	G G	G G	G G	J	J	J	J	J J	٦ -	J	J	J	J	J		
	6.8 8.2	C	C	C C	G	G	G	G	J	J J	J	J	J	J	J J	J	J	J	J		
	10	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	12 15	C C	C C	C C	G G	G G	G G	G G	J	J	J J	J	J	J	J J	J	J	J	J		
	18	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	22 27	C C	C C	C C	G G	G G	G G	G G	J	J J	J	J	J J	J	J	J	J J	J	J		
	33	<u>с</u>	C	C	G	G	G	G	J	J	J J	J	J	J	J	J	J	J	J		
	39	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	47 56	C C	C C	C C	G G	G G	G	G G	J	J J	J J	J	J J	J	J J	J	J	J	J		
	68	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	82 100	<u>С</u> С	C C	C C	G	G	G	G G	J	J J	J J	J	J J	J	J	J	J	J	J		
	120	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	150	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J		
	180 220	C C	C C	C C	G G	G G	G G	GG	J	J J	J	J	J J	J	J	J	J J	J	J		
	270	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	М		
	330 390	C C	C C	C C	G G	G G	G G	G	J	J J	J J	J J	M M	J J	J J	J	J J	J J	M M		
	470	Č	C	c	G	G	G		J	J	J	J	м	J	J	J	J	J	М		
	560 680				G G	G G	G G		J	J J	J J	J	M M	J	J	J	J J	J	M P		
	820				G	G	G		Ĵ	J	J	J	м	J	J	J	J	М			
	1000 1200				G	G	G		J	J J	J	J	М	J J	J	J	J J	Q Q			
	1500								J	J	J			J	J	J	M	Q			
	1800								J	J	J			J	J	M	М				
	2200 2700								J	J J	N N			J	J	M M	P P				
	3300								J	J				J	J	М	Р				
	3900 4700								J	J J				J	J	M M	P P				
	5600													J	J	M					
	6800 8200													M M	M M						
	0.010													M	M			L			
	0.012			\geq		~	-W	-													
	0.015		-	5			$\sum_{i=1}^{n}$	\leq -													
	0.022		1	-				ĮΤ													
	0.027		Ĺ			\sim		-													
	0.039				÷ŕ																
	0.047				t			-													
	0.082			I	1.1.1	I															
	0.1	16	25	50	14	25	EO	100	16	25	E0	100	200	16	25	E0	100	200	500		
	WVDC SIZE	16	25 AU02	00	16	25 AU	50 03	100	16	25	50 AU05	100	200	16	25	50 50	100 106	200	1 300		

* Contact Factory

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Y	Z	
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
			PAPER			EMBOSSED								

Capacitance Range (NP0 Dielectric)

PREFERRED SIZES ARE SHADED

SIZE		AU10				AU12				AU13			AU14	
Soldering		Reflow/Epo			Ret	flow/Epo	oxy/			Reflow/Epoxy Wire Bond*	1/	F	Reflow/Epoxy/	,
Packaging		Wire Bond Paper/Embo				Embos:	-			All Embosse			Wire Bond* All Embossed	
mm		3.20 ± 0.2				.50 ± 0.3				4.50 ± 0.30			5.72 ± 0.25	
(L) Length (in.)		(0.126 ± 0.0				177 ± 0.0				(0.177 ± 0.01	2)	(0.225 ± 0.010)
W) Width		2.50 ± 0.2				.20 ± 0.2				6.40 ± 0.40			6.35 ± 0.25	
(in.)		(0.098 ± 0.0 0.50 ± 0.2				126 ± 0.0				(0.252 ± 0.01) 0.61 ± 0.36	0)	(0.250 ± 0.010 0.64 ± 0.39)
(t) Terminal (in.)		(0.020 ± 0.0	10)		(0.0)24 ± 0.0	014)			(0.024 ± 0.01			0.025 ± 0.015	
WVDC Cap 0.5	25 5	0 100	200	500 2	5 50	100	200	500	50	100	200	50	100	200
(pF) 1.0 1.2														
1.5														-
1.8 2.2														-W-
2.7														
3.3 3.9														
4.7					_						<u> </u>			-
6.8													[™] t	
8.2				J			<u> </u>	+						
12				JJ										
18				J										
22 27				JJ										
33				J										
39 47				J										
56 68				J										
82				J										
100 120				J										
150 180		_		JJ	_									
220				J										
270 330				J										
390 470				M M										
560	J.		J	M										
680 820	J.		JJ	M										
1000 1200	J,		J M	M K M K		K K	K K	M M	M M	M	M M	M M	M M	P P
1500	J,	J J	м	M K	K	К	К	М	М	М	М	М	М	Р
1800 2200	J.		M Q	K K		K K	K K	M P	M M	M	M M	M M	M M	P P
2700 3300	J.	J J	Q	ĸ	K	К К	P P	Q Q	M	M	M	M	M	P P
3900	J,	J M		ĸ	K	ĸ	Р	Q	М	М	м	М	М	Р
4700 5600	J.	J M J		K K		K M	P P	Q X	M	M	M	M	M	P P
6800 8200	J,	J		ĸ	K	M M	X		M M	M	М	M M	M M	P P
0.010	J,	J		K	M	M			М	M		М	М	Р
0.012 0.015	J	J		K N					M M	M		M M	M M	P Y
0.018					1 M				P P	М		M M	M Y	Y Y
0.027				N	и м				Р			Р	Ŷ	Ŷ
0.033 0.039				N					P P			P P		
0.047				N	и м				P	ļ		Р		
0.068 0.082												P Q		
0.1 WVDC	25 5	0 100	200	500 2	5 50	100	200	500	50	100	200	Q 50	100	200
SIZE		AU10	00			AU12		000		AU13			AU14	200
* Contact Factory														_
Letter Max.		A 0.33	C 0.56	E 0.71	G 0.90	0.	J .94	K 1.02	M 1.27	N 1.40	P (1.52 1.	78 2.29		Z 2.79
Thickness		(0.013)	(0.022)	(0.028)		(0.0)37)	(0.040)	(0.050)	(0.055)	(0.060) (0.0 EMBOSSED		0) (0.100)	(0.110)

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE			AU						AU03							AU0							AL				
Soldering	1	R		/Ероху	/				ow/Ep		,						роху	/					eflow				
-	·		Wire I						ire Bo							ire Bo							Wire				
Packagin	•		All P 1.00 :						ll Pap 60 ± 0					F		r/Em 01 ±	boss	ed					oer/Ei 3.20 :				
(L) Length	mm (in.)	((± 0.10 ± 0.004	1)				60 ± 0 63 ± 0		`						0.20 0.008	2)					3.20 : .126 :				
	mm	((± 0.002 ± 0.10	+)				$\frac{03 \pm 0}{81 \pm 0}$)					79 ± 25 ±		5)					1.60				
W) Width	(in.)	((± 0.10 ± 0.004	1)				32 ± 0		`						0.20	3)					.063 :				
	mm	(0.25 :		<u>')</u>				35 ± 0		,					50 ±		,					0.50 :				
(t) Terminal	(in.)	(0		± 0.006	5)				14 ± 0)						0.010))					.020 :				
WVDC		10	16	25	<u></u> 50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
Сар	100																										
(pF)	150																										
(61)	220				С				G																		
	330				С					G	G	G		J	J	J	J	J	J								K
	470				С					G	G	G		J	J	J	J	J	J								K
	680				C					G	G	G		J	J	J	J	J	J								K
	1000				С					G	G	G		J	J	J	J	J	J								К
	1500 2200				C C					G G	G G			J J	J	J	J	J	J J		J J	J	J	J	J	J J	M M
	3300			С	C					G	G			J	J	J	J	J	J		J	J J	J	J	J	J	M
	4700			c	c					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	6800		С	c	U					G	G			J	J	J	J	J	J		J	J	J	J	J	J	P
	0.010		C					G		G	G			J	J	J	J	J	J		J	J	J	J	J	J	P
Cap	0.015		c						G	G	Ū			J	J	Ĵ	J	J	J		Ĵ	Ĵ	J	J	J	M	
(µF)	0.022	С	C						G	G				J	J	J	J	J	N		J	J	J	J	J	M	
	0.033	С							G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.047							G	G	G				J	J	J	J	N			J	J	J	J	J	м	
	0.068							G	G	G				J	J	J	J	N			J	J	J	J	J	Р	
	0.10						G	G	G	G				J	J	J	J				J	J	J	J	М	Р	
	0.15					G	G							J	J	J	N	N			J	J	J	J	Q		
	0.22					G	G							J	J	N	N	N			J	J	J	J	Q		
	0.33													N	N	N	N	N			J	J	м	P	Q		
	0.47 0.68													N N	N	N N	N	N			M	M	M Q	P	Q		
	1.0													N	N N	N	<u> </u>				M	M	Q	Q	Q		
	1.0													IN	IN	IN					P	Q	Q	Q	Q		
	2.2															P*					Q	Q	Q				
	3.3																				~	Y	~				
	4.7													P*							Q	Q					
	10																				Q*						
	22																ĺ	1		Q*			1	İ	1		
	47																										
	100																										
	WVDC	10	16	25	50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
	SIZE			AU02					AU03	3						AU0	5						AL	106			

* Contact Factory

Letter	А	C	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

021220

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE					AU10					AU				J13		J14
Soldering	a				flow/Epo					Reflow				/Epoxy/		/Epoxy/
Packagin	•				Vire Bond er/Embos					All Emb	Bond*			Bond* bossed		Bond* bossed
	ng mm				8.20 ± 0.2					4.50 ±				± 0.30		± 0.25
(L) Length	(in.)				126 ± 0.0					(0.177 ±				± 0.00 ± 0.012)	-	± 0.20 ± 0.010)
14/) 14/: -I+I-	mm				2.50 ± 0.2					3.20 ±			<u>``</u>	± 0.40		± 0.25
W) Width	(in.)				098 ± 0.0					(0.126 ±				± 0.016)		± 0.010)
(t) Terminal	mm				0.50 ± 0.2					0.61 ±				± 0.36		± 0.39
	(in.)				020 ± 0.0			500		(0.024 ±		500	<u> </u>	± 0.014)		± 0.015)
WVDC	100	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
Сар	150															
(pF)	220															
	330											I				I
	470													\langle	_W	-
	680										-		<			-
	1000										<u> </u>	(-		\	レ	↓ I —
	1500	J	J	J	J	J	J	М				$ \leq $				
	2200	J	J	J	J	J	J	М					<u> </u>	Ĩ		
	3300	J	J	J	J	J	J	М					t			
	4700	J	J	J	J	J	J	М				1	_ L	1	1	1
	6800	J	J	J	J	J	J	М								
Сар	0.010	J	J	J	J	J	J	М	K	K	К	ĸ	М	М	М	Р
(μF)	0.015	J	J	J	J	J	J	Р	K	K	K	P	M	M	M	P
	0.022	J	J	J	J	J	J	Q	K	K	K	P	M	M	M	P P
	0.033 0.047	J J	J J	J J	J	J	J	Q	K K	K K	к К	X Z	M	M	M M	P
	0.047	J	J	J	J	J	M		K	K	K	z	M	M	M	P
	0.000	J	J	J	J	J	M		K	K	K	Z	M	M	M	P
	0.15	J	J	J	J	M	Z		ĸ	ĸ	P		M	M	M	P
	0.22	J	J	J	J	Р	Z		К	К	Р		М	М	М	Р
	0.33	L	J	J	J	Q			К	М	Х		М	М	М	Р
	0.47	М	M	M	M	Q			К	P			M	M	M	P
	0.68	M N	M	Р	X X	X Z			M	Q X			M	P P	M	P P
	1.0	N	N	Z	z	Z			Z	z			M		M	X
	2.2	X	x	Z	Z	Z			Z	Z					M	
	3.3	Х	Х	Z	Z				Z							
	4.7	Х	X	Z	Z				Z							
	10	Z	Z	Z		ļ										
	22															
	47 100															
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
	SIZE	10		20	AU10	100	200	000	00	AU		000		J13		J14

* Contact Factory

Letter	A	С	E	G	J	K	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
•			PAPER						EMBC	DSSED			

Capacitance Range (X5R Dielectric)

PREFERRED SIZES ARE SHADED

	SIZE				AL	J02					1	AUOS	3					AL	J05					AU	106						AU1	0				A	AU12	
:	Soldering	g				/Epo Bono				F		ow/E e Bo		/					/Epo Bono						/Epo Bono				l		ow/E e Bo				R		w/Ep e Bor	ooxy/ nd*
F	Packagin	g			All F	Pape	r				Al	l Pap	er				Pape	er/Ei	mbo	ssec	I		Pape	er/Ei	mbo	ssec	1		Pa	aper	/Eml	boss	sed		A	All En	nbos	ssed
(L) Len	gth	mm (in.)				± 0.10 ± 0.0						0 ± 0 3 ± 0)					± 0.20 ± 0.0						± 0.20 ± 0.00						20 ± 0 26 ± 0		5)		(4.50 (0.177	0 ± 0. 7 ± 0.	
(W) Wie	dth	mm (in.)				± 0.10 ± 0.00						1 ± 0 2 ± 0							± 0.20 ± 0.00						± 0.20 ± 0.00						50 ± 0 98 ± 0		3			3.20 (0.126	0 ± 0. 6 + 0	
(t) Tern		mm				± 0.1						5 ± 0							± 0.2						± 0.2						50 ± 0		<u> </u>				1 ± 0.	
(i) Terri		(in.)		<u>``</u>		± 0.0	<u> </u>				<u>`</u>	4 ± 0					<u>`</u>		± 0.0	<u>, </u>			<u> </u>		± 0.01				·	<u>`</u>	20 ± 0	-	<u> </u>			(0.024		<u> </u>
	WVDC		4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
Сар		100																																				
(pF)		150 220																																				
		330						С																														
		470						С																														
L		680						С																												\square		
		1000						С																														
		1500						C																														
		2200 3300						C C																								-		-		'	\vdash	
		4700					с	U							G																							
		6800					c								G																							
Сар		0.010					C								G																							
(µF)		0.015					С						G	G	G																							
		0.022				С	С						G	G	G						Ν																	
		0.033				С							G	G	G						N																	
		0.047				С	С						G	G	G						N																	
		0.068				С							G		G						Ν																	
		0.10		С		С	С						G		G				Ν		Ν																	
		0.15											G						Ν	N																		
		0.22		C*								G	G						N	N							_					-				<u> </u>		
		0.33 0.47	C*									G G	G						N N						Q	Q	Q											
		0.47	<u>ل</u>									G							N						Q	ų								x				
		1.0				-				G	G	G	J*			N		N	N	-	P*				Q	Q		-	-		-	x	X	X	-	\vdash		
		1.5								-						N																						
		2.2	C*						G*	G*	J*	J*				N	Ν	N	N					Q	Q							Z	X					
		3.3							J*	J*	J*	J*				Ν	Ν					Q	Q															
		4.7							J*	J*	J*						Ν	N*	N*			Q	Q	Q	Q						Q	Z						
		10							K*							P*	P*	P*				Q	Q	Q	Q*					Х	z	Z					Ζ	
		22 47														P*						Q* Q*	Q*	Q*					Z Z*	Z	Z	Z						
		100																										Z*	Z*									
		WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
		SIZE			AL	J02						AUO:	3					AL	J05					AU	106						AU1	0				A	\U12	

* Contact Factory

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER					<u>`</u>	EMBC	SSED			

= *Optional Specifications – Contact Factory

NOTE: Contact factory for non-specified capacitance values

MLCC Gold Termination – AU Series AU16/AU17/AU18

	IZE		(AU1 030	5)			(0	U17 508	3)			(AU1 061:	2)	
Pacl	kaging			nboss 31 ± 0					boss 7 ± 0.					1boss 0 ± 0		
Length	mm (in.)			31 ± 0 32 ± 0		`		0.05							.25 .010)	
Width			1.6	50 ± 0 53 ± 0	.15				0 ± 0.	25	-		3.2	20 ± 0		
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	V
222	(µF) .0022		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	V
332	0.0033		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	۷
472	0.0047		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	۷
682	0.0068		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	۷
103	0.01		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	٧
153	0.015		Α	Α	Α	Α	S	S	S	S	V	S	S	S	S	W
223	0.022		Α	А	Α	Α	S	S	S	S	V	S	S	S	S	W
333	0.033		Α	Α	Α		S	S	S	V	V	S	S	S	S	W
473	0.047		Α	Α	Α		S	S	S	V	А	S	S	S	S	W
683	0.068		Α	Α	Α		S	S	s	А	А	S	S	S	V	W
104	0.1		Α	Α	$\overline{\mathcal{M}}$		S	S	V	Α	Α	S	S	S	V	W
154	0.15		Α	Α			S	S	V			S	S	S	W	W
224	0.22		Α	А			S	S	А			S	S	V	W	
334	0.33						V	V	Α			S	S	V		
474	0.47						V	V	K			S	S	V		
684	0.68						Α	А				۷	V	W		
105	1	A					Α	Α				V	V	Α		
155	1.5						K					W	W			
225	2.2											Α	Α			
335	3.3											K/				
475	4.7															
685	6.8															
106	10															

Solid = X7R

	1	
	mm (in.)	
	AU16 (0612)	
ode	Thickness	
S	0.56 (0.022)	
V	0.76 (0.030)	
W	1.02 (0.040)	
А	1.27 (0.050)	

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS MM (IN.)

	L	W	t
AU16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
AU17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
AU18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS MM (IN.)

	Α	В	С
AU16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
AU17 (0508)	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
AU18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

MLCC Tin/Lead Termination "B" (LD Series)

COG (NP0) - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

See FLEXITERM® section for CV options

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

COG (NP0) - Specifications and Test Methods

Paramet	er/Test	NP0 Specification Limits	Measuring	Conditions
Operating Temp	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 109	% for cap ≤ 1000 pF
Q	!	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% fo Voltage: 1.0	r cap > 1000 pF
Insulation F	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 60 ± 5 secs @ roo	n rated voltage for m temp/humidity
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) n 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Test Time: 3	30 seconds / 1mm/sec
Flexure Stresses	Q	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.1	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater		
Resistance to	Q	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at room	
	Appearance	No visual defects	-	
	Capacitance Variation	\leq ±3.0% or ± .3 pF, whichever is greater	Charge device with twic chamber set a	
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou Remove from test chamb	rs (+48, -0).
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature before me	for 24 hours
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidi (+48, -0) with rated	voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		

COG (NPO) – Capacitance Range

PREFERRED SIZES ARE SHADED

			•																
SIZE			LD02				03				LD05					LD0	-		
Solderin			eflow/Wa				v/Wave				flow/Way					Reflow/			
Packagi			All Pape		ļ		Paper				er/Embos				P	aper/Em			
(L) Length	mm (in.)		.00 ± 0.1 040 ± 0.0				± 0.15 ± 0.006)				.01 ± 0.20)79 ± 0.00					3.20 ± (
	(in.) mm		0.50 ± 0.0				± 0.006) ± 0.15				$\frac{179 \pm 0.00}{.25 \pm 0.20}$					1.60 ± 0			
W) Width	(in.)		0.00 ± 0.00				± 0.006))49 ± 0.00				(0.063 ± 0			
(t) Terminal	mm		.25 ± 0.1		1		± 0.15			0	.50 ± 0.25	5				0.50 ± 0			
	(in.)		010 ± 0.0				± 0.006)				020 ± 0.01					0.020 ± 0			
0	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
Cap (pF)	0.5 1.0	C C	C C	C C	G G	G G	G G	G G	J J	J	J	J	J J	J	J	J	J	J	J
(pr)	1.0	č	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.5	č	c	c	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ
	1.8	С	C	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.7	<u>С</u> С	C C	C C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.3 3.9	c	c		G	GG	G	G	J	J	J	J	J J	J	J	J	J	J	J
	4.7	c	c	C C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	5.6	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	10	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	12 15	C C	C C	C C	GG	GG	G G	G G	J J	J	J	J	J J	J	J	J	J	J	JJ
	18	C	C C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22	č	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	Ĵ	J
	27	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	33	С	C	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	47 56	C C	C C	C C	GG	G G	G	G	J J	J	J	J	J J	J	J	J	J	J	J
	68	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82	Ċ	c	c	G	G	G	G	J	J	J	Ĵ	J	Ĵ	J	Ĵ	Ĵ	Ĵ	J
	100	С	C	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	120	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	150	C C	C C	C C	GG	G G	G G	G	J J	J J	J	J	J J	J	J	J	J	J	J
	180 220	c	C C		G	G	G	G	J	J	J	J	J	J	J	J	J	J	M
	270	č	c	c	G	G	G	G	J	J	J	J	M	J	J	J	J	J	M
	330	C	C	C	G	G	G	G	J	J	J	J	M	J	J	J	J	J	M
	390	С	С	С	G	G	G	G	J	J	J	J	м	J	J	J	J	J	м
	470	С	С	С	G	G	G		J	J	J	J	M	J	J	J	J	J	M
	560 680				G G	G G	G G		J	J	J	J	M	J	J	J	J	J	M P
	820				G	G	G		J	J	J	J		J	J	J	J	J	F
<u> </u>	1000				G	G	G		J	J	J	J		J	J	J	J	Q	
	1200					G			J	J	J			J	J	J	J	Q	
L	1500				L			L	J	J	J			J	J	J	M	Q	\square
	1800								J	J	J			J	J	M	M		
	2200 2700								J	J	N N			J	J	M	P P		
<u> </u>	3300				<u> </u>	<u> </u>			J	J	N N			J	J	M	P		$\mid - \mid$
	3900								J	J				J	J	M	Р		
L	4700								J	J				J	J	м	Р		
	5600													J	J	м			
	6800 8200													M M	M				
Сар	0.010				1									M	M				
(pF)	0.012																		
	0.015		L	>			·												
	0.018			-1	\sim		$\mathbf{\mathbf{x}}$												
	0.022		- (\sim			ÎT												
	0.027		+ ($\left - \right $
	0.033																		
	0.035				a t														
	0.068		Г	1	1		. —					1							
	0.082																		
L	0.1	10	05	50	10	~	50	100	10	2 5	50	100		10	~	50	100	202	Em.
	WVDC SIZE	16	25 LD02	50	16	25	50 50	100	16	25	50 LD05	100	200	16	25	50 50	100	200	500
	SIZE		LDUZ			LU	03				LD03					LDU	0		

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

COG (NP0) – Capacitance Range

PREFERRED SIZES ARE SHADED

X8R – General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

X8R – Specifications and Test Methods

Parame	ter/Test	X8R Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance	Freg.: 1.0 k	·Hz + 10%
Dissipatio	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) n 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
Traindity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

X8R – Capacitance Range

	SIZE	LD	03	LD	05	LD	06
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182		G	G	J	J	J	J
222		G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682			-	J	J	J	J
822	Cap 8200	1000 G G G 1500 G G G 1800 G G G 2200 G G G 2200 G G G 2700 G G G 3300 G G G 3900 G G G 3900 G G G 4700 G G G 5600 G G G 6800 G G G 0.01 G G G 0.012 G G G 0.013 G G G 0.018 G G G 0.027 G G G 0.033 G G G 0.047 G G G 0.1068 G G G 0.11 Imag Imag	J	J	J	J	
103			-	J	J	J	J
123			-	J	J	J	J
153			G	J	J	J	J
183				J	J	J	J
223			-	J	J	J	J
273			-	J	J	J	J
333				J	J	J	J
393			-	J	J	J	J
473			G	J	J	J	J
563				N	N	М	М
683		G		N	N	М	M
823				N	N	М	М
104				N	N	М	М
124				N	N	М	M
154				N	N	М	М
184				N		М	М
224				N		М	М
274						М	M
334						М	М
394						М	
474						М	
684	0.68						
824	0.82						
105	11						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	LD	03	LD	05	LD	06

Letter	A	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED	~		

112916

X7R – General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/ Lead Termination "B" products.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R

X7R – Specifications and Test Methods

Paramet		X7R Specification Limits	Measuring	
Operating Tem		-55°C to +125°C	Temperature C	cycle Chamber
Capac Dissipatio		Within specified tolerance ≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	- Freq.: 1.0 k Voltage: 1.0	
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roc	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) h 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	n 00	mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.1	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		1
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	rated voltage (≤ 10V) in
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	nd humidity for
	Dielectric Strength	Meets Initial Values (As Above)		ore measuring.

X7R – Capacitance Range

PREFERRED SIZES ARE SHADED

			-					-																		
SIZE			LD02					LD03							LD05							LD				
Soldering Packaging			low/V II Pap					low/W							low/W	<u>/ave</u> ossed						Reflow aper/Er				
	, mm		30 ± 0					$\frac{11}{50 \pm 0}$							$01 \pm 0.$						F ¢	3.20 :		eu		
(L) Length	(in.)		40 ± 0					63 ± 0							79 ± 0.						(0.126 :		8)		
W) Width	mm		50 ± 0 20 ± 0					81 ± 0 32 ± 0						1.2	25 ± 0. 49 ± 0.	.20				-		1.60 ± 0.063 ±		0)		
	(in.) mm		20 ± 0 25 ± 0					35 ± 0							$49 \pm 0.50 \pm 0.$						(0.50 :		0)		
(t) Terminal	(in.)		10 ± 0					14 ± 0							20 ± 0.						(0.020 ±		0)		
WVDC		16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
Сар	100	-				-	-								-					-						
(pF)	150																									
	220			С																						
	330			С					G	G	G		J	J	J	J	J	J								K
	470			С					G	G	G		J	J	J	J	J	J								к
	680			С					G	G	G		J	J	J	J	J	J								к
	1000			С					G	G	G		J	J	J	J	J	J								K
	1500			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	2200			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	3300		С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	4700		С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	6800	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
	0.010	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	P
	0.015	С						G	G				J	J	J	J	J	J		J	J	J	J	J	M	
	0.022	С						G	G				J	J	J	J	J	N		J	J	J	J	J	M	
	0.033	С						G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.047						G	G	G				J	J	J	J	N			J	J	J	J	J	M	
(0.068						G	G	G				J	J	J	J	N			J	J	J	J	J	Р	
	0.10		C*			G	G	G	G				J	J	J	J	N			J	J	J	J	P	P	
	0.15				G	G							J	J	J	N	N			J	J	J	J	Q		
	0.22				G	G							J	J	N	N	N			J	J	J	J	Q		
	0.33												N	N	N	N	N			J	J	M	P	Q		
	0.47							J*					N	N	N	N	N			M	M	M	P	Q		
	1.0					J*	J*						N N	N N	N N*					M	M	Q Q	Q Q	Q Q		
	1.5					J.	J						IN	IN	IN					P	Q	Q	ų ų	ų ų		
	2.2				J*										P*						Q	Q				
	3.3				5										F					Q	Q	ų				
	3.3 4.7												P*	P*						0*	Q*	Q*				
	10											P*	P							0*	0*	Q				
	22											-	•					-	0*	ų	ų	4				
	47																		Y							
	100																									
	WVDC	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
	SIZE		LD02		1			LD03							LD05											

Letter	А	С	E	G	J	K	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
									EMBC	SSED			

= Under Development

X7R – Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE					LD10					LD	12		LC	013		LD	020		LD	14
Solderin				R	eflow On	у				Reflov	v Only		Reflo	w Only		Reflow	w Only		Reflow	w Only
Packagii	ng				er/Embos					All Emb				bossed			bossed			bossed
(L) Length	mm				.20 + 0.2					4.50 ±				± 0.30			± 0.50			± 0.25
	(in.)				26 ± 0.0					(0.177 ±				± 0.012)			± 0.020)			± 0.010)
W) Width	mm				.50 ± 0.2					3.20 ±				± 0.40			± 0.40			± 0.25
,	(in.)				98 ± 0.0					(0.126 ±				± 0.016)			± 0.016)			± 0.010)
(t) Terminal	mm				.50 ± 0.2					0.61 ±				± 0.36			± 0.39			± 0.39
1/	(in.)	10	10		20 ± 0.0		000	500	50	(0.024 ±	· · · · ·	500		± 0.014)	05	<u>``</u>	± 0.015)		· ·	± 0.015)
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
Cap	100																			
(pF)	150 220																		ļ	
	330															ŧ.		\geq	-W	
	470																\leq		$\int \int \mathbf{T}$:
	680																		\mathcal{P}	-
	1000															t				
	1500	J	J	J	J	J	J	М										∗ t		
	2200	J	J	J	J	J	J	м									. '			
	3300	J	J	J	J	J	J	м												
	4700	J	J	J	J	J	J	м												
	6800	J	J	J	J	J	J	м												
	0.010	J	J	J	J	L	J	M	K	K	K	K	M	M		X	X	X	M	Р
(µF)	0.015	J	J	J	J	J	J	Р	K	K	K	P	M	М		X	X	X	M	Р
	0.022	J	J	J	J	J	J	Q	К	K	K	Р	М	М		Х	X	X	М	Р
	0.033	J	J	J	J	J	J	Q	К	К	K	X	M	М		X	X	X	M	Р
	0.047	J	J	J	J	J	J		K	K	K	Z	M	М		X	X	X	M	Р
	0.068	J	J	J	J	J	M		K	K	K	Z	M	M		X	X	X	M	Р
	0.10	J	J	J	J	J	м		K	K	K	Z	M	М		X	X	X	M	P
	0.15	J	J	J	J	M	Z		K	K	P		M	M		X	X	X	M	P
	0.22	 	J	J	J	P Q	Z		K K	K M	P X		M	M		X X	X X	X X	M	P P
	0.33	M	M	M	M	Q			K	P	^		M	M		X	X		M	P P
	0.47	M	M	P N	X	Q X			M	Q			M	P		X	X	~	M	I P
	1.0	N	N	P P	X	Z			M	X			M	P		X	X		M	P P
	1.5	N	N	Z	z	Z			Z	z			M			x	x		M	X
	2.2	X	X	Z	Z	Z			Z	z			IV.			x	X		M	~
	3.3	X X	X	Z	Z	-			Z	-						X	Z			
	4.7	x	x	Z	z				z							X	Z			
	10	Z	Z	z	z											Z	z			
	22	Z	Z									l		l	Z					
	47																			
	100																			
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
SIZE					LD10					LD	12		LC	013		LD	020		LD	14

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
		· · · · · · · · · · · · · · · · · · ·	PAPER						EMBC	SSED	·	·	

X5R – General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

X5R – Specifications and Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +85°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roc	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	nm
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.1	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		1
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 chamber set at 85°C : (+48, -0). Note: Contac	± 2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	specification part numl < 1.5X rate	pers that are tested at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb	er and stabilize at room
	Dielectric Strength	Meets Initial Values (As Above)	temperature for 24 ± 2 h	ours before measuring.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	i voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)		ore measuring.

112916

X5R – Capacitance Range

PREFERRED SIZES ARE SHADED

					•												Œ	Ш					Ш													
SIZE				L	002					L	D03	3					LD	05					LD	06					L	.D10)				LD1	12
Solderi	ing		R	eflo	N/W	ave				Reflo	w/V	Vave	9			Re	flow	/Wav	/e			Re	eflow	/Wa	ve			1	Reflo	w/W	lave					
Packag	ing				Рар						Pap				P			nbo		d	P		er/Er			d		Pa		Emb		ed				
(L) Length	mm				± 0.					1.60								0.20					.20 ±							0 ± 0						
	(in.) mm				± 0. ± 0.				((0.063			6)					0.00					126 ±					((6 ± 0 0 ± 0)				
W) Width	(in.)					004)			(0	0.032			6)					0.00					063 ±					(0		8 ± 0)				
(t) Terminal	mm				±0.					0.35								0.25					.50 ±							0 ± 0						
WVDC	(in.)	4			±0.	006) 25	50	4		0.014				50	63			0.01		50	63		020 ±			50	4			$\frac{0 \pm 0}{16}$			50	6.3	10	25
Сар	100	-	0.0	10	10	20	00	-	0.0	10	10	20	00	00	0.0	10	10	20		00	0.0	10	10	20	00	00	-	0.0	10	10	20			0.0		20
(pF)	150																																			
(i)	220						С																													
	330						С																					I	1			1				
	470						С																						_	-1-	1	\geq	\leq	<u> </u>	>	/
	680						С																					7	< (-	~				Ť
	1000						С																						l	_			_	\square		Ľ
	1500						С																								\sim	1				
	2200						C C																	-							-	ť				
	3300 4700					С	C							G																	. '					
	6800					c								G																						
Сар	0.010			-		C								G					-						-							1			-	
(μF)	0.015					C						G	G	G																						
	0.022				С	С						G	G	G						Ν																
	0.033				С							G	G	G						Ν																
	0.047				C	С						G	G	G						Ν																
	0.068				С							G		G						Ν																
	0.10			С	С	С						G		G				Ν		Ν																
	0.15											G						N	N																	
	0.22		C*								G G	G G						N N	Ν							Q		_	_						\rightarrow	
	0.33	C*	C*								G	G						N						Q	Q								x			
	0.68	U									G							N						Q	Q I											
	1.0	C*	C*	C*					G	G	G	J*					Ν	N		P*				Q	Q						х	X	x		+	
	1.5																																			
	2.2	C*						G*	G*	J*	J*					Ν	Ν	Ν					Q	Q							Ζ	х				
	3.3							J*	J*	J*	J*				Ν	Ν					Х	Х														
	4.7							J*	J*	J*					N	Ν		N*			х	х	Х	X						Q	Z					
	10							K*							Р	Ρ	Ρ				Х	Х	Х	Х					Х	Ζ	Z			\square		Ζ
	22														P*						Х	Х	Х	X				Z	Ζ	Ζ	Z					
	47 100																				Х						Z*	Z* Z								
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50		<u>ک</u> 6.3	10	16	25	35	50	6.3	10	25
	SIZE		2.5		002		1.00	<u> </u>	10.0		D03				0.0		LD		100		5.5		LD					5.0		.D10		100	00	<u> </u>	LD1	
	0121				-02					_	500		_			_																			201	

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						FMBC)SSFD			

*Optional Specifications – Contact factory

NOTE: Contact factory for non-specified capacitance values

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

HOW TO ORDER

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

FLEXITERM FEATURES

- a) Bend Test
 - The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

 a) Temperature Cycle testing FLEXITERM[®] has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0

Capacitance Range

SIZ	E	04	02		06	03				0805					12	206		
Solde	ring	Reflow	/Wave		Reflow	/Wave			Re	eflow/Wa	ave					v/Wave		
WVE		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
0R5	0.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R0	1.0	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R2	1.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R5	1.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R8	1.8	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R2	2.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R7	2.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R3	3.3	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R9	3.9	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
4R7	4.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
5R6	5.6	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
6R8	6.8	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
8R2	8.2	C C	C C	G G	G G	G G	G G	J	J J	J	N N	N N	J J	J	J	J J	J J	J J
100	10.0		C	G			G	J	J	J			J		J			
120 150	12 15	C C	C	G	G G	G G	G	J	J	J	N N	N N	J	J J	J J	J	J	J J
180	15	C C	C	G	G	G	G	J	J	J	N N	N N	J	J	J	J	J	J
220	22	C	C	G	G	G	G	J	J	J	N N	N N	J	J	J	J	J	J
270	22	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
330	33	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
390	39	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
470	47	0	Ū	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
510	51			G	G	G	G	J	J	J	N	N	J	J	J	J	0	0
560	56			G	G	G	G	J	J	J	N	N	J	J	J	J		
680	68			G	G	G	G	J	J	J	N	N	J	J	J	J		
820	82			G	G	G	G	J	J	J	N	N	J	J	J	J		
101	100			G	G	G	G	J	J	J	N	N	J	J	J	J		
121	120			G	G	G		J	J	J	N	N	J	J	J	J		
151	150			G	G	G		J	J	J	N	N	J	J	J	J		
181	180			G	G	G		J	J	J	N	N	J	J	J	J		
221	220			G	G	G		J	J	J	N	N	J	J	J	J		
271	270			G	G	G		J	J	J	N	N	J	J	J	J		
331	330			G	G	G		J	J	J	N	N	J	J	J	J		
391	390			G	G			J	J	J			J	J	J	J		
471	470			G	G			J	J	J			J	J	J	J		
561	560			G	G			J	J	J			J	J	J	J		
681	680			G	G			J	J	J			J	J	J	J		
821	820							J	J	J			J	J	J	J		
	1000							J	J	J			J	J	J	J		
122 152	1200 1500																	
	1800																	
	2200							ļ										
	2700																	
	3300		<u> </u>					<u> </u>										
	3900							L										
	4700																	
	10nF							L										
WVE		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	0V 25V 50V 100V 200V 250V 50					500V
Siz			02			03				0805	2001							
312		04	V2		00					0000			1206					

Letter	А	С	E	G	J	K	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

031020

Automotive MLCC - X7R

Capacitance Range

	SIZE		0402	2				060	3					0	805						120	6				12	210		1	812		2220	
So	Idering	Ref	low/W	lave			Re	flow/\	Nave		-	1		Reflo	w/Wa	ve				Re	eflow/	Wave				Reflo	w Onl	v	Reflo	w Only	Ref	flow C	Inly
	WVDC	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
221	Cap 220	С	С	С											С																		
271	(pF) 270	С	С	С				1						1				1	1					1			1			1			
331	330	С	С	С														1									1			1			
391	390	С	С	С																													
471	470	С	С	С																										1			
561	560	С	С	С																										1			
681	680	С	С	С																										1			
821	820	С	С	С																													
102	1000	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	K	K	К	К			
182	1800	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	K	K	K	ĸ			
222	2200	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	K	K	K	К			
332	3300	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	K	K	К	К			
472	4700	С	С	C	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	K	K	К	К			
103	Cap 0.01	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	K	K	K	К			
123	(F) 0.012	С			G	G	G	G	G			J	J	J	N	Ν	N	J	J	J	J	J	J		К	К	K	K	K	K			
153	0.015	С			G	G	G	G	G			J	J	J	Ν	Ν	N	J	J	J	J	J	J		К	K	K	K	K	К			
183	0.018	С			G	G	G	G	G			J	J	J	Ν	Ν	N	J	J	J	J	J	J		К	K	K	K	K	К			
223	0.022	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		К	К	К	К	К	К			
273	0.027	С			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		К	К	K	K	К	К			
333	0.033	С			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		К	К	K	К	К	К			
473	0.047				G	G	G	G	J			J	J	J	N	N	N	J	J	J	М	М	М		К	К	K	К	К	К			
563	0.056				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		К	К	K	М	К	К			
683	0.068				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		К	К	К	М	К	К			
823	0.082				G	G	G	G	J			J	J	J	N			J	J	J	М	М	M		К	К	К	M	K	К			
104	0.1				G	G	G	G	J			J	J	J	N			J	J	J	М	Р	Р		К	К	K	M	K	К			
124	0.12				G							J	J	N	N			J	J	м	М	Q	Q		К	К	К	Р	К	К			
154	0.15				G							М	N	N	N			J	J	м	М	Q	Q		К	к	К	Р	К	К			
224	0.22				G							М	N	N	N			J	М	м	Q	Q	Q		М	м	М	P	м	М			
334	0.33							L				N	N	N	N	L		J	М	P	Q			L	Р	Р	P	Q	X	X]
474	0.47			<u> </u>			<u> </u>				ļ	N	N	N	N	<u> </u>		M	M	P	Q	<u> </u>	<u> </u>		P	P	P	Q	X	X	<u> </u>		
684	0.68			<u> </u>			<u> </u>					N	N	N	N	<u> </u>		M	Q	Q	Q	<u> </u>	<u> </u>		P	P	Q	X	X	X	<u> </u>		
105	1			<u> </u>			<u> </u>					N	N	N	N			M	Q	Q	Q		<u> </u>		P	Q	Q	Z	X	X	<u> </u>	Z	Z
155	1.5		L	<u> </u>			<u> </u>				ļ	N	N	<u> </u>				Q	Q	Q	Q		<u> </u>		P	Q	Z	Z	X	X	<u> </u>	Z	Z
225	2.2		L	<u> </u>			<u> </u>					N	N	<u> </u>				Q	Q	Q	Q	<u> </u>	<u> </u>		X	Z	Z	Z	Z	Z	<u> </u>	Z	Z
335	3.3																	Q	Q	Q					X	Z	Z	Z	Z			Z	Z
475	4.7																	Q	Q	Q					X	Z	Z	Z	Z		-	Z	Z
106	10																								Z	Z	Z		Z		Z	Ζ	Z
226	22	16\/	251/	E01/	10\/	161/	251/	EOV/	1001	2001/	2501	161/	251/	E01/	1001	2001	25014	161/	251/	501/	1001	2001	2501/	500V	16\/	251/	E0)/	1001	50V	1001/	Z	EOV/	1001/
	VVDC Size	101	0402	1001	100	101	237	0603		2007	2500	100	237		805	2000	2500	100	237	307	120		12500	3007	101		<u>150v</u> 210	1000		100V 812		2220	100V
	0126		0402			-		0000	,	_	_			L.	000		_	L			120	0				14	_10			012		2220	

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

Automotive MLCC - X8R

Capacitance Range

S	IZE	06	03	08	305	12	06
Sol	dering	Reflow	/Wave	Reflow	w/Wave	Reflow	/Wave
WVDC	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
123	(F) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	M	М
683	0.068	G		N	N	M	М
823	0.082			N	N	M	М
104	0.1			N	N	М	М
124	0.12			N	N	M	М
154	0.15			N	N	M	М
184	0.18			N		M	M
224	0.22			N		M	М
274	0.27					M	M
334	0.33					M	М
394	0.39					M	
474	0.47					М	
684	0.68						
824	0.82						
105	1	051	50)/	051	501/	05)/	501/
WVDC	WVDC	25V	50V	25V	50V	25V	50V
S	IZE	06	03	08	305	12	00

L	etter	A	C	E	G	J	К	М	N	Р	Q	Х	Y	Z
N	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thi	ckness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAPER	·				·	EMBO	DSSED	·		

080818

APS for COTS+ High Reliability Applications General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NP0, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

AVX'S APS RELIABILITY TEST SUMMARY

- 100% Visual Inspection
- DPA

58

- IR, DF, Cap, DWV
- Maverick Lot Review
- Thermal Shocl
- 85/85 Testing
- Additional Life Testing
- C of C with every Order
- Quarterly Data Package

HOW TO ORDER

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm[®] that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Number.

APS COTS+ NP0 Series

Capacitance Range

Size	AP	03 = 06	03	AP	05 = 08	05		AF	P06 = 12	06			AP10	= 1210	
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
100 10pF	G	G	G	J	J	J	J	J	J	J	J				
120 12	G	G	G	J	J	J	J	J	J	J	J				
150 15	G	G	G	J	J	J	J	J	J	J	J				
180 18	G	G	G	J	J	J	J	J	J	J					
220 22	G	G	G	J	J	J	J	J	J	J					
270 27	G	G	G	J	J	J	J	J	J	J					
330 33	G	G	G	J	J	J	J	J	J	J					
390 39	G	G	G	J	J	J	J	J	J	J					
470 47	G	G	G	J	J	J	J	J	J	J					
510 51	G	G	G	J	J	J	J	J	J	J					
560 56	G	G	G	J	J	J	J	J	J	J					
680 68	G	G	G	J	J	J	J	J	J	J					
820 82	G	G	G	J	J	J	J	J	J	J					
101 100	G	G	G	J	J	J	J	J	J	J					
121 120	G	G	G	J	J	J	J	J	J	J					
151 150	G	G	G	J	J	J	J	J	J	J					
181 180	G	G	G	J	J	J	J	J	J	J					
221 220	G	G	G	J	J	J	J	J	J	J					
271 270	G	G	G	J	J	J	J	J	J	J					
331 330	G	G	G	J	J	J	J	J	J	J					
391 390	G	G		J	J	J	J	J	J	J					
471 470	G	G		J	J	J	J	J	J	J					
561 560				J	J	J	J	J	J	J					
681 680				J	J	J	J	J	J	J					
821 820				J	J	J	J	J	J	J					
102 1000				J	J	J	J	J	J	J		J	J	J	J
122 1200								ļ				J	J	M	M
152 1500								ļ				J	J	M	M
182 1800								ļ				J	J	M	М
222 2200								ļ				J	J	М	М
272 2700								ļ							ļ
332 3300								ļ							ļ
392 3900															
472 4700															
103 10nF															
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
Size	AP	03 = 06	03	AP	05 = 08	05		AF	PO6 = 12	06			AP10	= 1210	

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

TS 16949, ISO 9001Certified

082917

APS COTS+ X7R Series

Capacitance Range

	Size		AP	03 = 06	503			AP	05 = 0	805			1	AP06 =	= 1206				AP10 :	= 1210)	AP12	= 1812	AP2	20 = 22	220
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	К	К	K	К	К	К			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	K	K	К			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	К	K	К			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	K	K	К			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	К	K	К	K	K	K			
103	0.01	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	К			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
153	0.015	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	K	K	К			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	К	К	К			
273	0.027	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	K	K	K			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	K	K	K			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	K	К	К	К	К			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		К	К	К	M	К	К			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		К	К	К	M	К	К			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	К	К	М	К	К			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		К	K	К	M	К	К			
124	0.12						J	J	М	N		J	J	М	М			К	К	К	Р	К	К			
154	0.15						М	Ν	М	N		J	J	М	М			К	К	К	Р	К	К			
224	0.22						М	Ν	M	N		J	М	M	Q			M	M	М	P	М	М			
334	0.33						N	Ν	М	N		J	М	Р	Q			Р	Р	Р	Q	Х	Х			
474	0.47						N	Ν	М	N		М	М	Р	Q			Р	Р	Р	Q	X	Х			
684	0.68						N	Ν	N			М	Q	Q	Q			Р	Р	Q	Х	X	Х			
105	Cap 1.0						Ν	Ν	N*			М	Q	Q	Q*			Р	Q	Q	Z*	X	Х			
155	(µF) 1.5											Q	Q	Q				Р	Q	Z	Z	X	Х			
225	2.2											Q	Q	Q				Х	Z	Z	Z*	Z	Z			
335	3.3											Q						Х	Z	Z	Z	Z				
475	4.7											Q						Х	Z	Z		Z*				
106	10																	Z	Z*		ļ				Z	Z*
226	22				1001					1001					1001						1001		1001	Z		1001
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V		200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	= 1206				AP10 :	= 1210)	AP12	= 1812	AP2	20 = 22	220

*Not currently available with lead plating finish, contact plant for further information.

Letter	А	С	E	G	J	K	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
		·	PAPER		·				EMBO	SSED			

TS 16949, ISO 9001Certified

APS COTS+ X8R/L Series

Capacitance Range

X8R

	SIZE	AP03 =	0603	AP05	= 0805	AP06 =	1206
· · · · ·	WVDC	25V	50V	25V	50V	25V	50V
331	Cap 330	G	G	J	J		
471	(pF) 470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
153	(µF) 0.015	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
683	0.068	G		N	N	М	M
104	0.1			N	N	М	M
154	0.15			N	Ν	М	M
224	0.22			N		М	M
334	0.33					М	M
474	0.47					М	
684	0.68						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06	03	08	05	120	16

X8L

	SIZE			AP03 = 060	3		AP05 = 0	805			AP06	= 1206		
	WVDC		25V	50V	100V	25V	50V	10	0V	16V	25V	50V	100V	
331	Сар	330		G	G		J		J					
471	(pF)	470		G	G		J		J					
681		680		G	G		J		J					
102		1000		G	G		J		J					
152		1500		G	G		J		J			J	J	
222		2200		G	G		J		J			J	J	
332		3300		G	G		J		J			J	J	
472		4700		G	G		J		J			J	J	
682		6800		G	G		J		J			J	J	
103	Сар	0.01		G	G		J		J			J	J	
153	(µF) (0.015	G	G		J	J		J			J	J	
223		0.022	G	G		J	J		J			J	J	
333		0.033	G	G		J	J	1	1			J	J	
473		0.047	G	G		J	J	1	1			J	J	
683		0.068	G	G		J	J					J	J	
104		0.1	G	G		J	J					J	M	
154		0.15				J	N			J	J	J	Q	
224		0.22				N	N			J	J	J	Q	
334		0.33				N				J	M	P	Q	
474		0.47				N				М	M	P		
684		0.68								М				
105		1								М				
	WVDC		25V	50V	100V	25V	50V	10	0V	16V	25V	50V	100V	
	SIZE			0603			0805	5			12	206		
Let	ter	A	С	E	G	J	К	М	N	P	Q	X	Y	Τ
					-				-				1	+

2.79

(0.110)

TS 16949, ISO 9001Certified

Max. Thickness 0.33

(0.013)

0.56

(0.022)

0.71

(0.028)

PAPER

0.90

(0.035)

0.94

(0.037)

1.02

(0.040)

1.27

(0.050)

1.40

(0.055)

1.52

(0.060)

EMBOSSED

1.78

(0.070)

2.29

(0.090)

2.54

(0.100)

MLCC with FLEXITERM®

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM[®]. FLEXITERM[®] is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM[®], AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM[®] will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

· e.g. Depanelization: Components near edges of board.

Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- · Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

MLCC with FLEXITERM[®] Specifications and Test Methods

PERFORMANCE TESTING

AEC-Q200 Qualification:

- Created by the Automotive Electronics
 Council
- Specification defining stress test qualification for passive components

Testing:

Key tests used to compare soft termination to AEC-Q200 qualification:

- Bend Test
- Temperature Cycle Test

BOARD BEND TEST RESULTS

AEC-Q200 Vrs AVX FLEXITERM® Bend Test

1210

X7R

X7R soft term

TABLE SUMMARY

Typical bend test results are shown below:

Style	Conventional Termination	FLEXITERM
0603	>2mm	>5mm
0805	>2mm	>5mm
1206	>2mm	>5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

Substrate Bend (mm)

12 10

8

6

4

2 0

NPO

- · Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance

Test Temperature Profile (1 cy	rcle)
+125° C +25° C -55° C	nins —

BOARD BEND TEST PROCEDURE

According to AEC-Q200

 Test Procedure as per AEC-Q200:

 Sample size:
 20 components

 Span: 90mm
 Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)

BEND TESTPI ATE

2.16

Fig 1 - PCB layout with electrical connections

Fig 2 - Board Bend test equipment

AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

Bend Test

The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife

- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm

BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

FLEXITERM[®] TEST SUMMARY

Qualified to AEC-Q200 test/specification with the exception of • using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).

 FLEXITERM® provides improved performance compared to standard termination systems.

WITHOUT SOFT TERMINATION

Board bend test improvement by a factor of 2 to 4 times.

- Temperature Cycling:
- 0% Failure up to 3000 cycles
- No ESR change up to 3000 cycle

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

64

MLCC with FLEXITERM®

Capacitance Range X8R Dielectric

	SIZE	06	03	30	305	12	206
S	oldering	Reflow	/Wave	Reflov	v/Wave	Reflow	/Wave
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G			1	
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
	Cap 0.01	G	G	J	J	J	J
123	(µF) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	М	М
683	0.068	G		N	N	M	M
823	0.082			N	N	M	M
104	0.1			N	N	M	M
124	0.12			N	N	M	M
154	0.15			N	N	M	M
184	0.18			N		M	M
224 274	0.22			N		M	M
	0.27					M	M
334	0.33					M	М
394	0.39					M	
474 684	0.47					M	
824	0.82						
105	1 WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06	03	08	305	12	206

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	(0.013)	(0.022)	PAPER	(0.000)	(0.037)	(0.040)	(0.030)	(0.000)	EMBO	(1 1 1)	(0.050)	(0.100)	(0.110)

TS 16949, ISO 9001Certified

020117

MLCC with FLEXITERM®

Capacitance Range X7R Dielectric

	Size			0402					06	03					0	805						120	6				12	10		18	12	<u> </u>	2220	
	Solderi	ng	Refl	ow/V	Vave			R	eflow	/Wave	;				Reflc	w/Wa	ve				Re	eflow/	Wave				Reflov	v Only	v	Reflow	v Only	Re	flow C	Only
	WVDC		16V	25V	50V	10V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	500V	16V	25V	50V	100V	50V	100 V	25V	50V	100 V
221	Cap	220	С	С	С											С																		
271	(pF)	270	С	С	С																													
331		330	С	С	С														1					ĺ	1									
391		390	С	С	С																													
471		470	С	С	С														1					1										
561		560	С	С	С																													
681		680	С	С	С																													
821		820	С	С	С														1					ĺ	1									
102		1000	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
182		1800	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	Κ	K	K	N	N			
222		2200	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
332		3300	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	Κ	K	K	N	N			
472		4700	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	Κ	K	K	Ν	N			
103	Сар	0.01	С				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	К	K	K	Ν	N			
123	(µF)		С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	Κ	K	K	Ν	N			
153		0.015	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	Κ	K	K	Ν	N			
183		0.018	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	Κ	K	K	Ν	N			
223		0.022	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	Ν	N			
273		0.027	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	Κ	K	K	N	N			
333		0.033	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
473		0.047					G	G	G				J	J	J	N	N	N	J	J	J	M	J	J		K	Κ	K	K	N	N			
563		0.056					G	G	G				J	J	J	N			J	J	J	M	J	J		K	K	K	M	N	N			
683		0.068					G	G	G				J	J	J	N			J	J	J	М	J	J		K	Κ	K	M	N	N			
823		0.082					G	G	G				J	J	J	N			J	J	J	M	J	J		K	K	K	M	N	N			
104		0.1	С				G	G	G				J	J	J	N			J	J	J	M	J	J		K	K	K	M	N	N			
124		0.12											J	J	N	N			J	J	М	M				Κ	K	K	P	N	N			
154		0.15											М	N	Ν	N			J	J	М	M				K	K	K	Р	N	N			
224		0.22				G							М	Ν	Ν	N			J	М	М	Q				М	М	М	Р	Ν	N			
334		0.33											Ν	N	Ν	N			J	М	Р	Q				Р	Р	P	Q	Х	Х			
474		0.47											N	N	Ν	N			М	М	Р	Q				Р	Р	P	Q	Х	Х			
684		0.68											Ν	Ν	Ν	N			М	Q	Q	Q				Р	Р	Q	Х	Х	Х			
105		1											N	N	Ν	N			М	Q	Q	Q				Р	Q	Q	Z	Х	Х			
155		1.5											Ν	N					Q	Q	Q					Р	Q	Z	Z	Х	Х			
225		2.2											Ν	Ν					Q	Q	Q					Х	Z	Z	Z	Z	Z			
335		3.3																	Q	Q						Х	Z	Z	Z	Z				
475		4.7																	Q	Q						Х	Z	Z	Z	Z				Z
106		10																								Z	Z	Z					Z	Z
226		22																														Z		
	WVDO			25V		10V	16V	25V			200V	250V	16V	25V			200V	250V	16V	25V	50V			250V	500V	16V			100 V	50V		25V		100 V
	Size			0402					06	03						805						120	6				12	10		18	12		2220	

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

FLEXISAFE MLC Chips

General Specifications and Capacitance Range For Ultra Safety Critical Applications

AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM[™] layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM[™] layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM[™] layer, the FLEXISAFE range of capacitors has unbeatable safety features.

HOW TO ORDER

FS05	5	C │	104	к Т	Q ⊤	Z ⊤	2 ⊤	<u>A</u>
Size FS03 = 0603 FS05 = 0805 FS06 = 1206 FS10 = 1210	Voltage 16V = Y 25V = 3 50V = 5 100V = 1	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10µF =106	Capacitance Tolerance J = ±5% K = ±10% M = ±20%	Failure Rate A = Commercial 4 = Automotive Q = APS	Terminations Z = FLEXITERM™ *X = FLEXITERM™ with 5% min lead *Not RoHS Compliant	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Std.Product

FLEXISAFE X7R RANGE

Capac	itance Code		FS03	= 0603			FS05 :	= 0805		FS	606 = 120	6	FS	510 = 121	0
S	oldering		Reflow	v/Wave			Reflow	/Wave		Re	eflow/Wav	/e	R	eflow Onl	y
	WVDC	16	25	50	100	16	25	50	100	16	25	50	16	25	50
102	μF 0.001														
182	0.0018														
222	0.0022														
332	0.0033														
472	0.0047														
103	0.01														
123	0.012														
153	0.015														
183	0.018														
223	0.022														
273	0.027														
333	0.033														
473	0.047														
563	0.056														
683	0.068														
823	0.082														
104	0.1														
124	0.12														
154	0.15														
224	0.22														
334	0.33														
474	0.47														

Qualified

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.

For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.

Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

HOW TO ORDER

RoHS COMPLIANT

m 2.10 ± 0.15 3.20 ± 0.20 Width (in.) (0.083 ± 0.006) (0.126 ± 0.008)	SIZE			W	2 = 05	08	W	3 = 061	2
Solderinq Reflow/Wave Reflow/Wave Packaging Paper/Embossed Paper/Embossed Length mm 1.30 to 1.5 1.60 to 1.50 (0.063 ± 0.006) Width mm 0.94 1.35 (0.126 ± 0.008) Max mm 0.94 1.35 (0.126 ± 0.008) Max mm 0.94 1.35 (0.126 ± 0.008) Max mm 0.94 1.35 (0.126 ± 0.008) Max mm 0.94 1.35 (0.126 ± 0.008) Max mm 0.94 1.8 (0.126 ± 0.008) Max mm 0.94 (0.126 ± 0.008) (0.126 ± 0.008) Max mm 0.94 (0.126 ± 0.008) (0.126 ± 0.008) Max mm 0.94 (0.126 ± 0.008) (0.126 ± 0.008) Max mm 0.94 (0.126 ± 0.008) (0.126 ± 0.008) Reflow/Max Reflow/Max Reflow/Max (0.126 ± 0.008) (0.126 ± 0.008) Reflow/Max Reflow/	# Ele	emen	ts		4			4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Re	flow/Wa	ave	Re	flow/Wa	ive
	Pac	kaqinq		Pap	er/Embos	ssed	Pape	er/Embos	sed
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Length		(in.)	(0.	051 ± 0.0	06)	(0.0	063 ± 0.00	06)
Maxmm (0.037)0.94 (0.053)1.35 (0.053)Thickness1025501625501R0Cap1.025501625501R2(pF)1.21R81.8.82R22.22.23R33.33R93.93R93.95R65.65R65.610010110101201213018131100141180151150161160151150 <td< td=""><td>Width</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Width								
WVDC1625501625501R0Cap1.0IR	Max.		mm		0.94			1.35	
1R0 Cap 1.0			(in.)			·			
1R2 (pr) 1.2 (pr) 1.2 $1R5$ 1.5 (pr) (pr) $1R8$ 1.8 (pr) (pr) $2R7$ 2.7 (pr) (pr) $2R7$ 2.7 (pr) (pr) $3R3$ 3.3 (pr) (pr) $3R9$ 3.9 (pr) (pr) $4R7$ 4.7 (pr) (pr) $5R6$ 5.6 (pr) (pr) $5R6$ 5.6 (pr) (pr) 120 12 (pr) (pr) (pr) 150 15 (pr) (pr) (pr) 180 18 (pr) (pr) (pr) 330 39 (pr) (pr) (pr) 330 39 (pr) (pr) (pr) 1101 100 (pr) (pr) (pr) 121 120 (pr) (pr) (pr) 181 180 (pr)				16	25	50	16	25	50
1R5 1.5 Image: 1.5 model of the sector		•							
1R8 1.8		(pF)							
2R2 2.2 2.7 -1 -1 -1 $3R3$ 3.3 3.3 -1 -1 -1 $3R9$ 3.9 -1 -1 -1 -1 $5R6$ 5.6 -1 -1 -1 -1 $5R6$ 5.6 -1 -1 -1 -1 100 10 -1 -1 -1 -1 180 18 -1 -1 -1 -1 180 18 -1 -1 -1 -1 330 33 -1 -1 -1 -1 330 33 -1 -1 -1 -1 -1 330 33 -1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2R7 2.7 2.7 2.7 2.7 $3R3$ 3.3 3.3 3.8 2.7 2.7 $3R7$ 3.9 3.9 3.9 3.7 2.7 $4R7$ 4.7 4.7 -100 -100 -100 100 100 100 -100 -100 -100 120 122 2.20 222 -100 -100 180 18 -100 -100 -100 -100 180 18 -100 -100 -100 -100 -100 390 39 39 -100 -100 -100 -100 -100 101 1000 -1000 -1000 -1000 -1000 <									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
3R9 3.9									
4R7 4.7 4.7 4.7 4.7 $5R6$ 5.6 4.7 4.7 4.7 $6R8$ 6.8 6.8 4.7 4.7 100 100 100 100 100 100 1100 100 100 100 100 100 120 120 120 120 1100 1100 1100 1101 1000 1101 1000 1101 1000 1101 1000 1111 1100 1111 1100 1111 1100 1111 1100 1111 1100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111100 1111000 1111000 1111000 1111000 1111000 11110									
SR6 5.6 7 7 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-								
6R8 6.8 6.8 6.8 6.8 6.8 6.8 8R2 8.2 6.8 6.8 6.8 6.8 6.8 100 10 121 120 121 12									
8R2 8.2									
100 10 10 120 12 15 150 15 18 180 18 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 332 3300 332 3300 332									
$\begin{array}{ c c c c c c } 120 & 12 & & & & & & & & & & & & & & & & & $									
150 15									
220 22 270 27 330 33 390 39 470 47 560 56 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 391 390 391 390 471 470 102 1000 152 1500 182 1800 221 2200 271 270 331 330 391 390 471 470 102 1000 152 1500 152 1500 152 1500 182 1800 222 2200 272 2700 332 <td< td=""><td>150</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	150								
$\begin{array}{c c c c c c c } 270 & 27 & & & & & & & & & & & & & & & & & $	180		18						
330 33 33 33 390 39 470 47 560 56 56 56 680 68 20 82 101 100 121 120 151 150 16 16 181 180 221 220 271 270 16 16 331 330 16 16 391 390 16 17 471 470 16 16 561 560 16 160 681 680 16 16 102 1000 122 1200 152 1500 17 17 182 1800 16 16 222 2200 16 17 17 332 3300 17 18 18 18 332 3300 18 18 18 18 332 3300 18 18 18 18 332 <t< td=""><td>220</td><td></td><td>22</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	220		22						
$\begin{array}{c c c c c c c } 390 & 39 & & & & & & & & & & & & & & & & & $	270		27						
$\begin{array}{c c c c c c c } 470 & 47 & & & & & & & & & & & & & & & & & $	330		33						
560 56 680 68 820 82 68 7 <th7< th=""> <th7< th=""> <th7< th=""> <</th7<></th7<></th7<>	390		39						
680 68 68 68 68 68 68 820 82 68 68 68 68 101 100 68 68 68 68 121 120 68 68 68 68 68 181 180 68 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
820 82									
101 100 101 100 101 100 121 120 151 150 161 160 161 181 180 221 220 20 161 161 162 331 330 331 330 163 163 160 163 561 560 561 560 163 160 163 160 102 1000 122 1200 152 1500 163 160 163 160 163 160 163 160 163 160 163 160 163 160 163 160 172 1700 172 1700 172 1700 172 1700 172 1700 172 1700 172 1700 173 172 1700 173 173 173 174 174 174 174 170 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174									
121 120									
151 150 Image: Constraint of the sector									
181 180 221 220 271 270 270 270 331 330 391 390 471 470 200 270 561 560 560 560 681 680 200 200 102 1000 222 2200 152 1500 200 200 272 2700 272 2700 332 3300 392 3900 472 4700 200 200 562 5600 560 562 682 6800 560 562									
221 220 271 270 271 331 330 391 390 391 471 470 390 391 390 471 470 390 391 390 561 560 391 390 391 102 1000 311 300 391 390 122 1200 100 122 1200 120 120 152 1500 152 1500 152 1500 140 140 222 2200 220 140 140 140 140 140 332 3300 392 3900 1472 14700 140 140 562 5600 140 140 140 140 140 140 562 5600 140 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
271 270 270 270 331 330 391 390 391 390 391 390 471 470 470 470 561 560 561 560 821 820 470 470 102 1000 100 100 152 1500 150 150 182 1800 100 100 222 2200 100 100 332 3300 100 100 332 3300 100 100 332 3300 100 100 332 3300 100 100 332 3300 100 100 332 3300 100 100 332 3300 100 100 332 3300 100 100 332 3300 100 100 366 6800 100 100									
331 330 391 390 471 470 561 560 681 680 821 820 102 1000 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800									
391 390									
471 470 Image: Constraint of the sector									
681 680 681 680 821 820 100 102 1000 100 100 122 1200 100 100 152 1500 100 100 222 2200 100 100 332 3300 100 100 372 3700 100 100 562 5600 100 100 682 6800 100 100									
821 820 Image: Constraint of the second sec	561		560						
102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800	681		680						
122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800									
152 1500 182 1800 222 2200 332 3300 392 3900									
182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800									
222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800									
272 2700 332 3300 392 3900 472 4700 562 5600 682 6800									
332 3300 392 3900 472 4700 562 5600 682 6800									
392 3900 472 4700 562 5600 682 6800									
472 4700 562 5600 682 6800									
562 5600 682 6800									
682 6800									\vdash

= Supported Values

Capacitor Array Capacitance Range – X7R

S	ZE			W2 =	050	8			V	V2 =	050	8			V	N3 =	061	2	
# Ele	ments		2						4					4	1				
	erinq		Reflow/Wave					F	Reflow	/Wave	е				Reflow	/Wav	е		
Pack	aqinq				Paper				Pa		mboss					per/Er			
Length	mm (in.)		(0.051	± 0.15				(0		± 0.15 ± 0.00					1.60 ±).063 :			
	mm				± 0.00				(0		± 0.00 ± 0.15				(± 0.00		
Width	(in.)		(0.083	± 0.00				(0	.083 :	± 0.00				(0).126 :	± 0.00		
Max.	mm			0	.94					0.	94					1.	35		
Thickness	(in.)		10		037)	50	100	-	10)37)	50	100		10	(0.0		50	100
101 Cap	/DC 100	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
121 (PF)																			
151 `´	150																		
181	180																		
221 271	220 270																		
331	330					<u> </u>						<u> </u>				<u> </u>		<u> </u>	
391	390																		
471	470																		
561	560																		
681	680																		
821 102	820 1000													_					
102	1200																		
152	1500																		
182	1800																		
222	2200																		
272 332	2700 3300			<u> </u>	<u> </u>	<u> </u>			<u> </u>										
392	3900																		
472	4700																		
562	5600																		
682	6800																		
822 103 Cap	8200 0.010			<u> </u>					<u> </u>							<u> </u>		<u> </u>	\vdash
123 (µF)	0.010																		
153	0.015																		
183	0.018																		
223	0.022																		
273 333	0.027																		
393	0.039																		
473	0.047																		
563	0.056																		
683	0.068																		
823 104	0.082					-	-												$\left - \right $
124	0.10																		
154	0.15																		
184	0.18																		
224	0.22																		
274 334	0.27		-																\vdash
334 474	0.33																		
564	0.56																		
684	0.68																		
824	0.82																		
105 125	<u>1.0</u> 1.2																		$\left - \right $
125	1.2																		
185	1.8																		
225	2.2																		
335	3.3																		
475 106	<u>4.7</u> 10																		$\left - \right $
226	22																		
476	47																		
107	100																		

Capacitor Array Automotive Capacitor Array (IPC)

As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

*Contact factory for availability by part number for K = ±10% and J = ±5% tolerance.

For RoHS compliant products.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avy.com/disclaimer/by-stream study of the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order

millimeters (inches)

PART & PAD LAYOUT DIMENSIONS

PART DIMENSIONS

0508 - 2 Element

L	W	Т	BW	BL	Р	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017±0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	Т	BW	BL	Р	Х	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	w	т	BW	BL	Р	Х	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10	0.18 +0.25 -0.08	0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063±0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007+0.010) -0.003	(0.030 REF)	(0.045±0.004)	(0.015±0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

Low Inductance Capacitors Introduction

The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

Low Inductance Capacitors

LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)

The LICA[®] product family is the result of a joint development effort between AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

LICA[®] products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA[®].

LICA[®] products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA[®] devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors, $LICA^{\oplus}$ products are the best option.

470 nF 0306 Impedance Comparison

Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

Low Inductance Ceramic Capacitors LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

AVX LICC products are available with a lead-free finish of plated Nickel/Tin.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μ F min.,whichever is less

HOW TO ORDER

*See the thickness tables on the next page.

**Select voltages for Automotive version, contact factory

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Ceramic Capacitors

LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

S	SIZE			0306	5				0508	3			(0612	2	
Pac	kaging		Er	nboss	ed			En	nboss	ed			En	nboss	ed	
Length	mm (in.)		0.81 + 0.15 (0.032 ± 0.006)				1.27 + 0.25 (0.050 ± 0.010)				1.60 + 0.25 (0.063 ± 0.010)					
Width	mm (in.)			50 + 0. 53 ± 0.)0 + 0. 30 ± 0.					20 + 0 26 ± 0		
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	А	Α	Α	S	S	S	S	۷	S	S	S	S	V
222	(μF) .0022		Α	А	Α	А	S	s	s	S	۷	S	s	S	S	V
332	0.0033		Α	А	Α	Α	S	S	s	S	٧	S	S	S	S	V
472	0.0047		Α	А	Α	Α	S	S	s	S	۷	S	S	S	S	V
682	0.0068		А	А	Α	А	S	S	S	S	V	S	S	S	S	V
103	0.01		Α	А	Α	А	S	S	S	S	V	S	S	S	S	V
153	0.015		А	А	Α	А	S	S	S	S	۷	S	S	S	S	W
223	0.022		Α	А	А	Α	S	s	s	S	۷	S	S	S	S	W
333	0.033		А	А	Α		S	S	S	٧	V	S	S	S	S	W
473	0.047		Α	А	, Ą,		S	S	s	۷	А	S	S	S	S	W
683	0.068		А	А	///		S	S	S	А	А	S	S	S	V	W
104	0.1		Α	А	Α		S	S	V	Α	А	S	S	S	V	W
154	0.15		Α	А			S	S	V			S	S	S	W	W
224	0.22		А	А			S	S	A,			S	S	V	W	
334	0.33						V	V	K			S	S	V		
474	0.47						V	V	А			S	S	V		
684	0.68						, A,	А				V	V	W		
105	1	Α					///	А				V	V	А		
155	1.5						А					,w,	W			
225	2.2											/k//	А			
335	3.3											А				
475	4.7															
685	6.8															
106	10															
Solid =	X7R	Z	\square	= >	(5R	2			=)	X78	;			=	= X6	S
	mm (in.)			ı	nm	(in.)				mn	n (in.)				

0306 Code Thickness 0.56 (0.022) Δ

0612

0.56 (0.022)

0.76 (0.030)

1.02 (0.040) 1.27 (0.050)

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

			mm (in.)
Size	L	W	t
0206	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
0306	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
0508	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
0508	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
0612	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
0012	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

			mm (in.)
Size	Α	В	C
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
0508	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
0612	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

041416

Low Inductance Capacitors with SnPb Terminations LD16/LD17/LD18 Tin-Lead Termination "B"

GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

*Not RoHS Compliant

HOW TO ORDER

*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Capacitors with SnPb Terminations LD16/LD17/LD18 Tin-Lead Termination "B"

... 、

LD17 LD18 LD16 SIZE (0306)(0508)(0612)Packaging Embossed Embossed Embossed 0.81 ± 0.15 1.27 ± 0.25 1.60 ± 0.25 mm Length (0.050 ± 0.010) (0.032 ± 0.006) (0.063 ± 0.010) (in.) mm (in.) 1.60 ± 0.15 2.00 ± 0.25 (0.080 ± 0.010) 3.20 ± 0.25 (0.126 ± 0.010) Width (0.063 ± 0.006) Сар WVDC 6.3 10 16 25 6.3 10 16 25 50 6.3 10 16 25 50 Code А А А S Cap 0.001 Δ s s s s 102 S S v S V ٧ 222 (µF) .0022 Α А А А s v S S S s s s s ٧ 332 А А А S v S S S 0.0033 А S S S S 472 А S v S S S v 0.0047 А А А S S S S 682 0.0068 А А А А S S S S v S S S S v 103 0.01 А А А А S S S S V S S S S ۷ 153 0.015 А А А А S S S S ۷ S S S S W 223 0.022 А А А А S S s S ٧ S S S s W 0.033 А А А s S s V S S S s W 333 ۷ А Α Α s S S ٧ S S S S W 473 0.047 А Α s s s s W 683 0.068 А Ą S А А S V 104 0.1 А А K S S ۷ А А S s S V W s S ٧ s s W 154 0.15 А Α S W Α А S S S s 224 0.22 А v W S ٧ v V S 334 0.33 Ą v ٧ s V S 474 0.47 /k ٧ W А 684 0.68 А V ٧ v 105 1 А А Ą \sqrt{k} W 155 1.5 W 225 2.2 A Ą 335 3.3 K 475 4.7 6.8 685 106 10

Solid = X7R

= X5R

LD17					
(0508)					
Thickness					
0.56 (0.022)					
0.76 (0.030)					
1.02 (0.040)					
	0508) Thickness 0.56 (0.022) 0.76 (0.030)				

mm (in.)

	•					
	mm (in.)					
LD18						
(0612)						
Code	Thickness					
S	0.56 (0.022)					
V	0.76 (0.030)					
W	1.02 (0.040)					

A 1.27 (0.050)

= X6S

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

			mm (in.)
Size	L	W	t
LD16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
LD17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
LD18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

			mm (in.)
Size	Α	В	С
LD16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
LD17 (0508)	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
LD18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

IDC Low Inductance Capacitors (RoHS) IDC (InterDigitated Capacitors) 0306/0612/0508

GENERAL DESCRIPTION

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

AVX IDC products are available with a lead-free finish of plated Nickel/Tin.

TYPICAL IMPEDANCE

HOW TO ORDER

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μ F min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder

RoHS COMPLIANT

IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

SIZE	W4 =	0306		W2 = Thin 0508				W2	2 = 05	608		W	3= Tł	nin 06	12	W3 = 0612					W3 = THICK 0612			612	
Max. mr	n 0.	55		0.55.					0.95			0.55			0.95				1.22						
Thickness (in	.) (0.0)22)		(0.022	2)			(0.037	')			(0.0	022)		(0.037)					(0.048)			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.01	0																								
0.02	2																								
0.03	3																								
0.04	7																								
0.06	8																								
0.1	0																								
0.2	2																								
0.3	3																								
0.4	7																								
0.6	8																								
1.	0																								
1.	5																								
2.	2																								
3.	3																								

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONSMILLIMETERS (INCHES)

SIZE	w	L	BW	BL	Р
0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
0306	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DIMENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

IDC Low Inductance Capacitors (SnPb) IDC (InterDigitated Capacitors) 0306/0612/0508

GENERAL DESCRIPTION

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

1

TYPICAL IMPEDANCE

L

HOW TO ORDER

3

Style IDC Case Voltage Capacitance Number of Dielectric Low Terminals 4 = 4VC = X7RCode (In pF) Size Inductance 2 = 0508 6 = 6.3V D = X5R 1 = 8 Termi-2 Sia. Diaits + Z = 10V Z = X7S 3 = 0.612Number of nals Y = 16V 4 = 0306 Zeros 3 = 25V*Not RoHS Compliant

225

D

6

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

PERFORMANCE CHARACTERISTICS

L

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000M Ω min, or 1,000M Ω per μF min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder

IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	050	В		W2	2 = 05	508		W	3= Tł	nin 06	12		W3	3 = 06	512		W3	= TH	ICK 0	612
Max. mm	0.				0.55.					0.95					.55				0.95				1.:		
Thickness (in.)	(0.0			1	(0.022					(0.037)	r		<u> </u>	022)			r	(0.037)		(0.048)			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONSMILLIMETERS (INCHES)

	SIZE	w	L	BW	BL	Р
Γ	0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	0306	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
Γ	0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
Γ	0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DIMENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

LGA Low Inductance Capacitors

0204/0306 Land Grid Array

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX. These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- · Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- Better solder joint reliability

APPLICATIONS

Semiconductor Packages

- Microprocessors/CPUs
- Graphics Processors/GPUs
- Chipsets
- FPGAs
- ASICs

Board Level Device Decoupling

- · Frequencies of 300 MHz or more
- ICs drawing 15W or more
- Low voltages
- · High speed buses

0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC

LGA Low Inductance Capacitors

0204/0306 Land Grid Array

PART DIMENSIONS

Series	L	w	т	BW	BL
LG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

MM (INCHES)

RECOMMENDED SOLDER PAD DIMENSIONS MM (INCHES)

 1	Series	PL	PW1	G
	LG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
	LG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

LGA Low Inductance Capacitors

0204/0306 Land Grid Array - Tin/Lead Termination "B"

HOW TO ORDER

PART DIMENSIONS

86

MM (INCHES)

S	eries	L	w	т	BW	BL
PG1:	2 (0204)	0.5 ± 0.05 (0.020±0.002)	1.00 ± 0.10 (0.039 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	0.8 ± 0.10 (0.031 ± 0.004)	0.13 ± 0.08 (0.005 ± 0.003)
PG2	2 (0306)	0.76 ± 0.10 (0.030 ± 0.004)	1.60 ± 0.10 (0.063 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	1.50 ±0.10 (0.059 ± 0.004)	0.28 ± 0.08 (0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

 Series	PL	PW1	G
PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)
 F 622 (0500)	0.03 (0.020)	1.50 (0.059)	0.20 (0.000)

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MM (INCHES)

High Temperature MLCCs AT Series – 200°C & 250°C Rated

Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "downhole" oil exploration and aerospace programs.

HOW TO ORDER

AT10	3	Ţ	104	K	A	Ţ	2	A T
AVX	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination	Packaging	Special
Style	Code	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	2 = 7" Reel	Code
AT03 = 0603	16V = Y	PME	+ no. of zeros)	J = ±5%		T = 100% Sn Plated	4 = 13" Reel	A = Standard
AT05 = 0805	25V = 3	C0G 250°C = A	101 = 100pF	K = ±10%		(RoHS Compliant)	9 = Bulk	
AT06 = 1206	50V = 5	C0G 200°C = 2	102 = 1nF	M = ±20%		7 = Ni/Au Plated		
AT10 = 1210		VHT 250°C = T	103 = 10nF			(For 250°C BME		
AT12 = 1812		VHT 200°C = 4	104 = 100nF			COG Only)		
AT14 = 2225		BME	105 = 1µF			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		C0G 250°C = 5	•					
		COG 200°C = 3						

ELECTRICAL SPECIFICATIONS

Temperature Coefficient

PME C0G 0±30ppm/°C, -55C to 250°C BME C0G 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C VHT: T ±15%, -55°C to +150°C

See TCC Plot for +250°C Capacitance Test (MIL-STD-202, Method 305)

25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Dissipation factor 25°C

C0G: 0.15% Max at 1.0 \pm 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 \pm 0.2 Vrms (open circuit voltage) @ 1kHz

Insulation Resistance 25°C (MIL-STD-202, Method 302) 100G Ω or 1000M Ω -µF (whichever is less)

Insulation Resistance 125°C (MIL-STD-202, Method 302) $10G\Omega$ or $100M\Omega$ -µF (whichever is less)

Insulation Resistance 200°C (MIL-STD-202, Method 302) $1G\Omega$ or $10M\Omega$ -µF (whichever is less)

Insulation Resistance 250°C (MIL-STD-202, Method 302) 100M Ω or 1M Ω -µF (whichever is less)

Direct Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50mA max charging current

millimeters (inches)

DIMENSIONS:

Size	AT03 = 0603	AT05= 0805	AT06=1206	AT10=1210	AT12=1812	AT14=2225
(L) Length	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	5.72 ± 0.25
(L) Lengui	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) Width	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
	(0.032 ± 0.006)	(0.049 ± 0.008)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0.250 ± 0.010)		
(T) Thickness Max.	1.02	1.30	1.52	1.70	2.54	2.54
(1) THICKNESS Max.	(0.040)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) min.	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
terminal max.	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)

PERFORMANCE CHARACTERISTICS

Typical Temperature Coefficient of Capacitance (VHT Dielectric)

Typical Temperature Coefficient of Capacitance (COG Dielectric)

Typical Voltage Coefficient of Capacitance (VHT Dielectric)

Typical Voltage Coefficient of Capacitance (COG Dielectric)

Typical RC vs Temperature (COG Dielectric)

88

RELIABILITY

VHT - Failure Rate	@ 90% Confidence Lev	/el (%/1000 hours)									
Temperature (°C)											
200	0.002	0.017									
250	0.026	0.210									
*Typical 1210, 1812, 2225 I	Failure Rate Analysis based	on 250°C testing and									

voltage ratings specified on the following page.

COG - Failure Rate	@ 90% Confidence Lev	vel (%/1000 hours)
Temperature (°C)	50% Rated Voltage	100% Rated Voltage
200	0.006	0.047
250	0.074	0.590

*Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

Impedance Frequency Response (COG Dielectric)

ESR Frequency Response (COG Dielectric)

89

CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

-			AT03 =	Δ	T05 =	200°0	06 =	AT1	0 =	AT12 =	AT14 =	[AT03 =		250 05 =		06 =	AT1	10 =	AT12 =	AT14 =
Case	e Si	ze	0603)805		206	12		1812	2225		(Case	Size	0603		805		206		10	1812	2225
Sold	lerir	ng	Reflow/Wave		ow/Wave		v/Wave			Reflow Only	Reflow Only			Solde	ring			Reflow/Wave		v/Wave		w Only	Reflow Only	Reflow Onl
.) Lengt	tn F	mm	1.60±0.15	_	1±0.20		±0.20	3.20:		4.50±0.30	5.72±0.25		(1) e	L) Length		1.60±0.15		2.01 ± 0.20		±0.20	<u> </u>	±0.20	4.50±0.30	5.72±0.25
/ 2011g1		(in.)	(0.063±0.006)		9±0.008)		±0.008) ±0.20	(0.126:	±0.008)	(0.177±0.012)	(0.225±0.010) 6.35±0.25		(2) 20.	gui	(in.)	(0.063±0.006) 0.81±0.15	(0.079±0.008) 1.25±0.20			±0.008) ±0.20		±0.008) ±0.20	(0.177±0.012) 3.20±0.20	(0.225±0.01
V) Widt		mm (in.)	0.81±0.15 (0.032±0.006)		5±0.20 9±0.008)		±0.20 ±0.008)		<u>±0.20</u> ±0.008)	3.20±0.20 (0.126±0.008)	0.35±0.25 (0.250±0.010)		(W) W	Vidth	mm (in.)	(0.032 ± 0.006)				±0.20 ±0.008)			(0.126±0.008)	6.35±0.2 (0.250±0.0
		mm	1.02		1.30		.52	1.		2.54	2.54	1 1	(T) TI ·		mm	1.02		30	· ·	.52	1.		2.54	2.54
) Thickn	iess	(in.)	(0.040)		0.051)	(0.	060)	(0.0		(0.100)	(0.100)		(1) lhi	ickness	(in.)	(0.040)		051)		060)		067)	(0.100)	(0.100)
Termi	ınal F	min	0.25(0.010)		5(0.010)		(0.010)	0.25(0.25(0.010)	0.25(0.010)		(t) Ter	rminal	min	0.25(0.010)		0.010)		(0.010)	0.25(0.25(0.010)	0.25(0.01
		max	0.75 (0.030)		5(0.030)		(0.030)	0.75(1.02 (0.040)	1.02 (0.040)				max	0.75(0.030)		0.030)		(0.030)	0.75(1.02 (0.040)	1.02 (0.04
ated T			200		200		00 4		00 4	200 4	200	╎╎			np. (°C)	250 T	2	50		50	2	50	250 T	250 T
emp. C Volta			25	25	_	25	4 50	25	50	4 50	<u>4</u> 50			<u>mp. Co</u> Voltag	efficeint	16	16	25	16	25	16	25	25	25
100	_	102	25	23	30	25	30	2.5	- 50		50			1000	102	10	10	23	10	25		25	25	25
120	_	122											- H	1200	122									
150	-	152			_								_ H	1500	152									
180	_	182											_ ⊢	1800	182									
220	-	222												2200	222									i
220	-	272											- H	2700	272									
330		332												3300	332									
330		332 392											ΎН	3900	392									
	_				_			-					- H	4700	472									
470	-	472			_			-					- H	5600	562									
560	-	562			_			<u> </u>					- H	6800	682									
680		682			_		<u> </u>	ļ					_ H=	8200	822									
820		822			_			<u> </u>					_	0.010	103									
0.0	-	103			_			<u> </u>					- H	0.010	123						<u> </u>	<u> </u>		
0.0	-	123			_		<u> </u>						_ H	0.012	153									
0.0	-	153			_								- H	0.013	183						<u> </u>	<u> </u>		
0.0		183												0.018	223									
0.0	_	223											- H				<u> </u>	<u> </u>			<u> </u>	<u> </u>		
0.0	-	273											- H	0.027	273 333		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		
0.0		333											_ H	0.033										
0.0	_	393											- H	0.039	393						<u> </u>	<u> </u>		
0.0	47	473												0.047	473						<u> </u>	<u> </u>		
0.0	56	563											- H	0.056	563						<u> </u>	<u> </u>		
0.0	68	683											_ H_	0.068	683					<u> </u>	<u> </u>	<u> </u>		
0.0	82	823											Can	0.082	823									
0.1	00	104											(µr)	0.100	104									
0.1	20	124											_ H	0.120	124									
0.1	50	154											- H	0.150	154		 	 						
0.1	80	184											_ H	0.180	184		ļ	ļ		<u> </u>				
0.2	20	224											- H	0.220	224	ļ	<u> </u>	<u> </u>		<u> </u>				
0.2	70	274											- H	0.270	274	ļ								
0.3	30	334											_ H	0.330	334									
0.3	90	394											_ ⊢	0.390	394		L	L		ļ				
0.4	70	474											- H	0.470	474					L				
0.5	60	564			1			1					_ H	0.560	564		Ļ	Ļ		ļ	<u> </u>	<u> </u>		
0.6	80	684					İ 👘	1	Ì				0	0.680	684									
0.8	_	824				1	İ –	1					C	0.820	824									
	-	105			1	1	i –	1					1	1.000	105									
Volta			25	25	50	25	50	25	50	50	50	[١	Voltag	e (V)	16	16	25	16	25	16	25	25	25
ated T	<u> </u>	· /	200		200	_	.00		00	200	200		Rat	ted Ter	np. (°C)	250		50		50		50	250	250
	· ·	. ,	AT03 =		T05 =		06 =		0 =	AT12 =	AT14 =			Case	Size	AT03 =	AT	05 =		06 =	AT1	10 =	AT12 =	AT14 :
Case	e Si	ze	0603		0805		206	12		1812	2225			uase	5128	0603	08	05	12	206	12	10	1812	2225

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

High Temperature MLCC

AT Series - 200°C & 250°C Rated

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

BME COG Temp. Coefficient: 4 200°C Rated

-					200	0°C Rated							i cinp. oocinicicit. o	250°C Rated
	Case S	ize	AT03	=0603	AT05	=0805	AT06	=1206		Case	Size	AT03=0603	AT05=0805	AT06 = 1206
	Solderi	ng	Reflow	v/Wave	Reflow	v/Wave	Reflov	v/Wave		Solde	ering	Reflow/Wave	Reflow/Wave	Reflow/Wave
(L)	Length	mm	1.60	±0.15	2.01	±0.20	3.20	±0.20	(1	.) Lengtl	n mm	1.60±0.15	2.01 ± 0.20	3.20±0.20
		(in.)		±0.006)		±0.008)		±0.008)			(in.)	(0.063±0.006)	(0.079±0.008)	(0.126±0.008)
(W) Width	mm		±0.15	1	±0.20	1	±0.20	()	N) Width		0.81±0.15	1.25±0.20	1.60±0.20
m	Thickness	(in.) mm		±0.006) .02		<u>±0.008)</u> .30		±0.008) .52		n	(in.) mm	(0.032±0.006) 1.02	(0.049±0.008) 1.30	(0.063±0.008) 1.52
(1)	Thickness	(in.)		. <u>uz</u> 040)		. <u>30</u> 051)	1	. <u>52</u> 060)	() T) hickness		(0.040)	(0.051)	(0.060)
(t)	Terminal	min	· · · · · · · · · · · · · · · · · · ·	(0.010)	1 · · · · · · · · · · · · · · · · · · ·	(0.010)	1	(0.010)	(t		min	0.25(0.010)	0.25(0.010)	0.25(0.010)
(-)		max		(0.030)		(0.030)		(0.030)		erminal		0.75 (0.030)	0.75(0.030)	0.75(0.030)
Ra	ited Temp	o. (°C)	2	00	2	.00	2	00	R	ated Te	mp. (°C)	250	250	250
	Temp. Coeffice		:	3		3		3		Ter Coeff		5	5	5
	Voltage		25	50	25	50	25	50		Voltag		25	25	25
		390	2.5	50	25	50	23		C	ap 39	390	23	23	23
Cap (pF	47	470								F) 47	470			
	56	560								56	560			
	68	680								68	680			
	82	820								82	820			
	100	101								100	101			
	120	121								120	121			
	150	151								150	151			
	180	181								180	181			
	220	221								220	221			
	270	271								270	271			
	330	331								330	331			
	390	391								390	391			
	470	471								470	471			
	560	561								560	1 I			
	680	681								680	681			
	820	821								820	821			
	1000	102								1000	1 1			
	1200	122								1200	1 1			
	1500	152								1500	1 I			
	1800	182								1800	1 1			
	2200	222								2200	1 1			
	2700	272							1	2700				
	3300	332								3300	1 1			
	3900	392								3900	1 1			
	4700	472								4700	1 1			
	5600	562								5600	1 î			
	6800	682			1					6800				
	8200	822								8200	1 1			
Cap	î 👘	103							C	ap 0.010	1 1			
(µF	0.012	123			i				(μ		1 1			
	0.015	_								0.01	1 I			
	0.018				i						3 183			
	0.022									0.02	1 1			
	0.027	273			1						7 273			
	0.033									0.03	1 1			
	0.039			1						0.03	1 1			
	0.047			1	1					0.04	1 1		1	1
	0.056									0.05	1 1		1	i
	0.068			1	1					0.05	1 1			1
	0.000									0.00	1 î		1	1
	0.100				1						023		1	1
	Voltage		25	50	25	50	25	50		Voltag	· · · ·	25	25	25
	ted Temp		200	200	200	200	200	200			mp. (°C)	250	250	250
					1				ľ					1
	Case S	ze	A103	=0603	A105	=0805	A106	=1206		Case	SIZE	AT03=0603	AT05=0805	AT06=1206

BME COG (Ni/Au) Temp. Coefficient: 5 250°C Rated

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

PM	E CC	G Temp. (Coefficient: 2	200°C Rate	ed		P	ME	CO	G Temp. (Coefficient: A	250°C Rate	ed	
Case	e Size	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	Size	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225
Sold	lering	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only		Solder	rina	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only
	Imm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25			mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25
(L) Length	(in.)	(0.079 ± 0.008)		(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)	(L) L	ength.	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
	mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25			mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(W) Width	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)	(W)	Width	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
	mm	1.30	1.52	1.70	2.54	2.54			mm	1.30	1.52	1.70	2.54	2.54
(T) Thickne	ess (in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)	(1) 1	Thickness	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
() T :	, min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	(1) T		min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
(t) Termina	ai max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)	(t) I	erminal	max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
Rated To	emp. (°C)	200	200	200	200	200	Ra	ted Tem	р. (°С)	250	250	250	250	250
Temp. C	oefficein	2	2	2	2	2	Te	mp. Coe	fficeint	A	A	A	A	A
Volta	ge (V)	50	50	50	50	50		Voltage	(V)	25	25	25	25	25
10	0 101							100	101					
12	0 121							120	121					
15	0 151							150	151					
18	0 181							180	181					
22	0 221							220	221					
27	0 271							270	271					
33	0 331							330	331					
39	0 391							390	391					
47								470	471					
56	0 561							560	561					
68								680	681					
Cap 82 (pF) 100							Сар	820	821					
							(pF)	1000						
120								1200						
150								1500						
180								1800	182					
220								2200						
270								2700						
330								3300						
390								3900						
470		_						4700						
560								5600 6800	_					
820								8200						
	10 103							0.010	_					
0.0								0.010						
	15 153							0.012	_					
0.0								0.018	_					
0.0					1			0.022						
0.0					1			0.027	273					
Cap (µF) 0.0			1	1	1		Cap (µF)	0.033		1		1		
(µF) 0.0							(μF)	0.039						
0.0								0.047						
0.0				1				0.056	_		İ			
0.0								0.068	_					
0.0								0.082						
0.1	00 104							0.100	104					
Volta	ge (V)	50	50	50	50	50	1	Voltage	e (V)	25	25	25	25	25
Rated To	<u> </u>		200	200	200	200		ed Tem			250	250	250	250
	e Size	/	AT06 = 1206					Case S			AT06 = 1206			
0050	5 0126	A103 - 0803	A100 - 1200	ATT0 = 1210	A112 - 1012	A114 - 222J		00380	120	A103 - 0003	A100 - 1200	ATT0 = 1210	A112 - 1012	A114 - 222J

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

92

High Voltage MLC Chips For 600V to 5000V Applications

NEW 630V RANGE

HOW TO ORDER

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)

*Note: Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

**The 3640 Style is not available on 7" Reels.

*** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*	3640*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.72 ± 0.25	9.14 ± 0.25
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.225 ± 0.010)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.35 ± 0.25	10.2 ± 0.25
	(0.049 ±0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.250 ± 0.010)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	2.54	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.100)	(0.100)
(t) terminal min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

*Reflow Soldering Only

millimeters (inches)

NP0 (C0G) DIELECTRIC – PERFORMANCE CHARACTERISTICS

Capacitance Range	10 pF to 0.100 μ F (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE – PREFERRED SIZES ARE SHADED

	e Size lering mm (in.)		0805 low/V		1		1206	-		_			210							808							18				
		1 2				Rell	ow/W	ave					w Only						Reflo	w Onl							Reflov	v Only	1		
W) Width	(In.)		10 ± 0			3.3	30 + 0.	30					+ 0.40							+ 0.50							4.60 +		2)		
	mm		<u>85 ± 0</u> 25 ± 0				30 + 0. +0.30/						+ 0.01 + 0.30					((+ 0.02						(().177 + 3.20 +		2)		
	(in.)		49 ± 0		(0).063 +			4)				+ 0.01					(0		+ 0.00						(0).126 -		8)		
(T) Thickness	s mm		1.35				1.80						80							20							2.	80			
(t) Terminal	<u>"(in.)</u> mm		<u>(0.053</u> 50 + 0				0.071) 0 + 0.						110) + 0.35							087) + 0.35							<u>(0.1</u> + 0.75				
	(in.)	(0.0	20 + 0	0.008)			4 + 0.0					(.030	0.014	,)						0.014							(.030)				
	ige (V)	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF)	.5 OR5 1.0 1R0		A												-																
	1.2 1R2		Â	C																											
	1.5 1R5	Α	Α	С	Х	Х	Х	Х	Х																						
	1.8 1R8	Α	Α	С	X	Х	Х	Х	X																						
	2.2 2R2 2.7 2R7	A	A	C C	X	X	X	X	X								C C	C C	6	C C	6	C C	C								
	3.3 3R3	A	A	C	x	X	Ŷ	X	X X								C	C	C	C	C	C	C C								<u> </u>
	3.9 3R9	A	A	C	X	X	X	X	X								C	C	C	C	C	C	C								
	4.7 4R7	Α	Α	С	Х	Х	Х	Х	Х								С	С	С	С	С	С	С								
	5.6 5R6	A	A	C C	X	X	X	X X	X								C C	C C	C C	C C		C C	C C								<u> </u>
	6.8 6R8 8.2 8R2	A A	A	C C	X	X	X	X	X						-		C		C C		C C	C	C C								
	10 100	A	A	C	X	X	X	x	X	С	М	М	D	М	F	С	C	C	C	C	C	C	C	С	С	С	С	С	С	С	E
	12 120	Α	A	C	Х	Х	Х	Х	Х	С	М	М	D	М	F	С	C	C	C	C	С	С	С	С	С	C	C	C	С	С	E
	15 150	A	A	C	X	X	X	X	X	C	M	M	D	M	F	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
	<u>18 180</u> 22 220	A	A	C C	X	X X	X	X X	XX	C C	M	M	D D	M	F	C C	C C	C C	C C	C C	C C	C C	C E	C C	C C	C C	C C	C C	C C	C C	F
	27 270	A	A	С	X	X	X	X	Х	C	М	М	D	М	F	С	С	С	С	C	C	C	Е	С	С	C	С	F	С	С	E
	33 330	Α	Α	C	X	X	X	D	M	C	М	Μ	D	М	F	C	C	C	C	Ċ	C	C	F	C	C	Ċ	С	F	C	С	E
	39 390	Α	A	C	X	X	X	D	М	С	М	М	D	М	F	С	C	C	C	C	C	C	F	С	С	C	C	F	C	С	E
	47 470 56 560	A A	A	C C	X	X X	C C	D C	M C	о 0	M	M M	D C	M C	F	C C	C C	C C	C C	C C	C C	C C	С	C C	C C	C C	C C	F	C C	cο	E
	68 680	A	A	C	Ŷ	X	C	C	C	C	M	M	C	C	F	C	C	C	C	C	C	C		C	C	C	C	F	C	C	F
	82 820	Х	X	X	Х	Х	С	С	С	С	М	М	С	С	F	С	С	С	С	С	С	С		С	С	C	С	F	С	С	F
	100 101	X	X	X	X	X	C	С	С	С	М	C	C	C	F	C	C	C	C	C	F	F		C	С	C	C	F	C	С	F
	<u>120 121</u> 150 151	C C	C C	C C	X	X	C C	E	E	C C	M	C C	E	C E		C	C C		C F	F C		F		C C	C					C C	G
	180 181	C	Ċ	C	1 X	X	E	E	E	C	M	Ē	Ē	Ē	F	C	C	Ċ	F	F	F	F		C	C	Č	Ċ	F	F	F	
	220 221	С	С	С	Х	Х	Е	E	E	С	М	E	E	Ē	F	С	C	C	F	F	F	F		С	С	C	С	F	F	F	
	270 271	С	C	C	C	М	E	E	E	С	М	E	E	E	G	С	F	C	F	F	F	F		C	С	C	C	F	F	F	
	<u>330 331</u> 390 391	C C	C C	C C	C C	M M	E	E	E	C C	M	E	E	E	-	C C	F	F	F	F	F	F		C C	C C	C C	F	F	F	F	
	470 471	C	C C		C	M	E	E	E	C	M	Ē	Ē	E		C	F	F	F	F	F	F		C	C	F	F	F	F	F	
	560 561	С	С		С	С	Е			С	М	Е	E	E		С	F	F	F	F		F		С	С	F	F	F	F	F	
	680 681	С	C		С	С	E			С	М	E	F	E		С	F	F	F	F				С	С	F	F	F	G	G	
	750 751 820 821	C C	C C		E	E	E			C C	M	E	G G	E		C C	F	F	F					C C	C C	F	F	F	G G	G G	
	1000 102		C		E	E	E			C	C	E	F	F		C	F	F	E	F				C	C	F	F	F	G	G	
	1200 122		С		E	E	E			C	С	E		F		C	F	F	Ē	F				C	C	F	E	E			
	1500 152		C		E	E				С	C	F		G		E	F	F		F				C	C	F	F	F			
	1800 182 2200 222		C C		E	E				C	C	G G		G		E	F	F		F			-	C C	C	F	G G	F G			
	2700 272				E	E				E	C	G				E	F	F						C	C	E	G	G			
	3300 332				Е	E				Е	С	G				E	F	F						С	С	F		G			
	3900 392		-			E				E	C	G			-	E	F		-					C	C	F					
	4700 472 5600 562		-			E				E	C E			-	-	E	F	-	-	-			-	C C	C C	G	-	-			
	6800 682										E					F	F							C	C						
	8200 822										F						F							E	С						
Cap (µF)	0.010 103										F G						F							E	C F		<u> </u>				
	0.012 123 0.015 153		-						$\left - \right $		6				-			-		-	-		-	F G	F G	-	-	-			
	0.018 183																							G	G						
	0.022 223										_														F						
	0.027 273								\mid			<u> </u>			-								<u> </u>		G	-					
	0.033 333 0.047 473								$\left - \right $						-										G						i
	0.056 563																														
	0.068 683																														
1/04-	0.100 104	600	620	1000	600	620	1000	1500	2000	600	620	1000	1500	2000	3000	600	620	1000	1500	2000	2500	2000	4000	600	630	1000	1500	2000	2500	2000	4000
	ige (V) e Size	000	0805		000		1206	1300	2000	000	030		1500 10	12000	13000	000	030	1000		12000 308	12300	13000	14000	000	030	1000	1500		12300	3000	4000
Letter	A		С		E		F		G		x		7	1	NOT	E: Co	ontac	ct fac	tory	for n	on-sp	pecif	ed ca	арасі	tanc	e val	ues				
Max.	0.813		448	1.8	034	2.2	098		794	0.9			.30	1																	
Thickness			057)		071)		087)		110))37)		130)	J																	

For 600V to 5000V Applications

NP0 (C0G) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Size					18	25								2220									2225	5								3640	0			
Soldering					Reflow	v Onl	у							ow C									low (flow				
L) Length (in					4.60 : 181 :	± 0.50 ± 0.02	0)							70 0.5 24 0.0									70 ± 0. 25 ± 0.									.14 ± 0 60 ± 0				
W Width m	m			`	6.30 :	± 0.40 ± 0.01								00 0.4 97 0.0								6.	.30 0.4 50 ± 0.	40							1	0.2 ± 0	1.25			
(in (in (in (T)) (T) (T) (T)	m			(3.	40	0)							3.40	10)								3.40								(0.4	2.54				
Thickness (in					(0.1 0.75 :									0.134) 5								(0.100 85 ± 0								0.	<u>(0.100</u> 76 (0.0				
n m	ax	600	(20	(0	.030 :	± 0.01		12000	14000	600	620	1000	(0.03	3 ± 0.	014)	2000	4000	5000	600	620	1000	(0.03	33 ± 0	.014)	12000	4000	5000	600	600	11000	1.	52 (0.0)60)	1 2000	4000	1.500
Voltage (V) Cap(pF) 1.5	1R5	000	030	1000	1500	2000	2500	3000	4000	000	030	1000	1500	2000	2300	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	000	030	1000	1500	2000	2500	3000	4000	5000
	1R8																																			
	2R2 2R7																																			<u> </u>
3.3	3R3																																			
	3R9 4R7	_																																		
5.6	5R6																																			
	6R8 8R2																																			-
	100	Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F									
12	120 150	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									<u> </u>
15 18	180	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
	220	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
	270 330	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F	-	-		-		-			-
	390	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
	470 560	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G G	-	-	-	-		-			G
68	680	Е	Е	G	Е	F	Е	F	F	Е	E	Е	Е	Е	Е	Е	E	Е	Е	E	Е	E	Е	E	Е	F	G									G
82	820 101	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F G	G G				G	G	G	G	G	G
120	121	E	Е	G	Е	F	Е	F	F	Е	Е	E	E	E	Е	E	E	E	E	E	Е	E	Е	E	Е	G	G				G	G	G	G	G	G
	151 181	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G G	G G				G	G G	G	G G	G G	G
220	221	Е	Е	G	Е	F	Е	F	F	Е	Е	E	E	E	Е	Е	F	F	Е	E	Е	Е	Е	Е	Е	G	G				G	G	G	G	G	G
	271 331	E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G G	G				G	G G	G	G G	G G	G
	391	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G					G	G	G	G	G	G
	471	E	E	G	E	F	E	F		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G					G	G	G	G	G	G
	561 681	E	E	G G	E	F	E F	F G		E	E	E	E	E	E	E F			E	E	E	E	E	E	E	G					G	G G	G	G G	G G	G
750	751	Е	Е	G	Е	F	F	G		Е	Е	E	Е	Е	F	F			E	Е	Е	Е	Е	E	Е						G	G	G	G	G	G
	821 102	E	E	G	E	F	F	G		E	E	E	E	E	F	F			E	E	E	E	E	F	E			G	G	G	G	G G	G	G G	G	G
1200	122	Е	Е	G	Е	F	G	G		Е	Е	Е	E	Е	G	G			Е	Е	Е	Е	Е	F	F			G	G	G	G	G	G	G	G	
	152 182	E	E	G G	F	G G	G	G		E	E	E	F	F	G G	G			E	E	E	E	E	F G	F G			G G	G	G	G	G G	G	G G		
2200	222	Е	Е	G	G	G		G		Е	Е	Е	G	G					Е	Е	Е	Е	Е					G	G	G	G	G	G	G		
	272 332	E	E	G G	G	G G		G		E	E	E	G G	G G					E	E	E	F	F					G G	G	G	G	G G	G	G		-
	392	E	E	G	G	G				E	E	E	G	G					E	E	E	G	G					G	G	G	G	G	G			
	472	E	E	G	G	G				E	E	E	G	G					F	F	F	G	G					G	G	G	G	G				
6800	562 682	F	F	G G	G	G G		L	L	F	F	F	G	G					F	F	F	G G	G G	L	L			G G	G	G	G G	G G			L	
8200	822	G	G	G		G				G	G	G							G	G	G							G	G	G	G					F
	103 123	F	E	G G						7	7	7				$\left - \right $			G G	G G	G				-			G G	G G	G	G					
	123		E				-	-	-							\vdash			G	G					-			G	G	G	-		-			\vdash
	183		E																G	G								G	G	G						
	223		Е																G	G								G	G	G						
	273		F																																	<u> </u>
	333		F				-	-	-							\square			G	G								G	G		-		-			
	393 473		G G				-	-	-										G	G					-			G	G	-	-		-			-
	563		G																G	G																\vdash
	683		G																G	G																
	104																																			
Voltage (V)		600	630	1000		·	2500	3000	4000	600	630	1000			2500	3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000	1500	·		3000	4000	500
Case Size					18	25							_	2220		_				_			2225									3640	J			
Letter		A 0.813		(1.4	2		E .8034	_	F 2.20			G 794		X).940		7		N	OTE	Con	tact	fact	ory 1	for n	on-s	pecit	fied c	сара	cita	nce	/alue	es				
Max.																																				

120919

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE – PREFERRED SIZES ARE SHADED

0			0005		1		1000					1010						10	00							10	10			
Case Size Soldering		Rof	0805 low/W	21/0		Rof	1206 low/W					1210 flow 0	nlv					18 Reflov								18 Reflow				
	mm		.10 0.2				30 ± 0.					.30 0.4						4.60								4.60				
(L) Length	(in.)	(0.0	85 ± 0.0	008)		(0.1	30 ± 0.	012)			(0.1	30 0.0	16)				(0.181 :	± 0.020)						0.177 :	0.012)		
	mm (in.)		25 ± 0.1 49 ± 0.0			1.60 0.063 (+0.30/		1)		(0.0	.50 0.3)98 0.0	0 12)				(0.20 ± 0.008)					(3.20 ± 0.126 ±)		
(T) Thickness	mm		1.35				1.80		/			2.80						2.:	20							2.	30	/		
	<u>(in.)</u> mm		(0.053) 50 ± 0.2	20			(0.071) 60 ± 0.					(0.110) .75 0.3						<u>(0.0</u>								<u>(0.1</u> 0.75 :				
	max		20 ± 0.0			(0.0	24 ± 0.	008)			(0.0	30 ± 0.	014)					0.030 ±	± 0.014							0.030 ±	0.014			
Voltage (V			630				1000						1500		600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF) 100	101	Х	Х	С	С	С	E	E	E	E	E	E	E	E																
120	121	Х	Х	С	С	С	E	E	E	E	Е	E	E	Е																
150	151	Х	Х	С	С	С	E	E	E	E	E	E	E	E																
180	181	Х	Х	С	С	С	E	E	E	E	E	E	E	E																
220	221	Х	Х	С	С	С	E	E	E	E	E	E	E	E											_					
270	271	Х	Х	С	С	С	E	E	E	E	E	E	E	E	_	_				_	_		E	E	E	E	E			
330	331	Х	Х	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E			
390	391	X	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E		_	
470	471	X	X	С	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E	E	E	
560	561	X	X	С	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	E	E	
680	681	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
750	751	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
820	821	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1000	102	X	X	X	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1200	122	X	X	X	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E				F					F	F	
1500	152	X	X	X	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
1800	182	X	X	X	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E		F			F		F		G	G	
2200	222 272	X C	X C	Х	C C	C C	E	E	E	E	E	E	F	E	E	E	E	F	F	F			F	F	F	F	F	G	G G	
2700	332	C	C		C	C	E	E		E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G G	G	
3300	392	C C	C		C	C	E			E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G	G	
4700	472	C C	C		C	C	E			E	E	E	F		E	E	E	F					F	F	F	F	F	G	G	
5600	562	c	C		c	C	E			E	E	E	F		E	E	E	F					F	F	F	G	G	G	0	
6800	682	c	C		c	C	E			E	E	E	F		E	E	E	F					F	F	F	G	G	0		
8200	822	C	c		C	C	E			E	E	E			E	E	E						F	F	F	G	G	-		
Cap(µF) 0.010	103	C	C		c	c	E			E	E	E			E	E	E						F	F	F	G	G			
0.015	153	C	C		E	E	E			E	E	E			F	F	F						F	F	F	G	-			
0.018	183	C	C		E	E	-			E	E	E			F	F	F						F	F	G					
0.022	223	С	С		Е	Е				E	Е	F			F	F							F	F	G					
0.027	273				Е	E				Е	Е				F	F							F	F	G					
0.033	333				E	E				E	E				F	F							F	F	G					1
0.039	393		1					1		E	E				F	F				1			F	F	G					1
0.047	473		İ		İ	1		İ		E	Е				F	F				İ	1		F	F	G					1
0.056	563					1				F	F				F	F			İ		ĺ		F	F						1
0.068	683		ĺ			1		ĺ		F	F				F	F	[ĺ			F	F		ĺ				İ
0.082	823					1				F	F												F	F						
0.100	104									F	F												F	F						
0.150	154																						G	G						
0.220	224																						G	G						
0.270	274																													
0.330	334																													
0.390	394																													
0.470	474																													
0.560	564																													
0.680	684				L																									<u> </u>
0.820	824				L																									ļ
1.000	105																													
Voltage (V Case Size		600	630	1000	600	630	1000		2000	600	630	1000	1500	2000	600	630	1000			2500	3000	4000	600	630	1000	1500		2500	3000	4000
			0805				1206					1210						18	08							18	12			

Letter	А	С	E	F	G	Х	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NOTE: Contact factory for non-specified capacitance values

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size	ļ					25								2220									2225									3640				
Soldering	_					w Only ± 0.50								flow C 70 ± 0.									flow C 70 ± 0									eflow (.14 ± 0				
(L) Length (in.)			((0.181 :	± 0.02	0)						(0.22	24 ± 0	.020)							(0.22	25 ± 0	.010)							(0.3	60 ± 0	.010)			
W) Width (in.				((6.30 : 0.248 :	± 0.40	6)							00 ± 0. 97 ± 0.								6.3	30 ± 0 50 ± 0	.40								0.2 ± 0 00 ± 0				
(T) mr	n				3.	40	0)							3.40									3.40									2.54 (0.100				
						134) ± 0.35								0.134 35 ± 0								0.8	(0.100 85 ± 0)) .35							0.	(0.100 76 (0.0)))30)			
(t) reminal ma	IХ				0.030 :	± 0.01	4)		1 1000			1000	(0.03	33 ± 0.	.014)				-	600	1000	(0.03	33 ± 0	.014)		1000	5000		100	1 4 9 9 9	1.	52 (Ò.C)60 <u>)</u>	0000	1000	5000
Voltage (V) Cap (pF) 100	101	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
	121						-																												-+	
	151																																		-	
	181																																			
220 2	221																																			
270 2	271																																			
330 3	331																																			
	391																																			
	471																																			
	561																																			
	581														-																					\mid
	751					-									-																		-			⊢ – ∣
	321 102	F	F	E	E.	F	F	с		E	E	E	F	F	F	G			E	F	F	E	F	F	F			G	G	G	G	G	G	G	G	G
	102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G G	G	G	G	G	G
	152	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
	182	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
	222	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
	272	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300 3	332	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3900 3	392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
4700 4	17 2	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
	562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
	582	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	
	322	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		
	103 153	F	F	F	G G	G G	G	G		F	F	F	G G	G G	G G	G			F	F	F	F G	F	G G	G G			G G	G G	G	G G	G G	G G	G G		<u> </u>
	153	F	F	F	G	G	6			F	F	F	G	G	G	<u> </u>			F	F	F	G	G	G	6			G	G	G G	G	G	G	G		<u> </u>
	223	F	F	F	G	G				F	F	F	G	G		<u> </u>			F	F	F	G	G	G				G	G	G	G	G	G		-	
	273	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G			-+	
	333	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G					
	393	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.047 4	1 73	F	F	F	Р			Ì		F	F	F	G						F	F	F	G						G	G	G	G					
0.056	563	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.068	583	F	F	G						F	F	G							F	F	F	G						G	G	G	G					
	323	F	F	G						F	F	G							F	F	G							G	G							\square
	104	F	F	G			<u> </u>			F	F	G							F	F	G				L			G	G							\mid
	154	F	F		-					F	F	G			-				F	F	G							G	G				-	$\left - \right $		\vdash
	224 274	F	F		-					F	F	G	<u> </u>	-	-	-			F	F							$\left - \right $	G	G	-				$\left - \right $		\vdash
	274 334	F	F			-				F	F			-			\vdash		F	F	-							G G	G G	-			-	$\left \right $		┢──┤
	334 394	F	F				+			F	F			-	-	-			F	F			-					G	G	-			-			┢──┤
	174	F	F			-		-		F	F			-	-				F	F			-		-		$\left - \right $	G	G					++	-	
	564	G	G							G	G								F	F								G	G					\vdash	-+	
	584						1			G	G								G	G															\neg	
0.820 8	324														L				G	G													L			
	105																																			
Voltage (V)		600	630	1000			2500	3000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000	1500			3000	4000	5000
Case Size					18	25								2220									2225	;								3640	ן			
Letter		А	1		С		Е		F		<u> </u>	G		Х	1	7	7	1 N	OTE	: Cor	ntact	fact	orv	for n	on-s	oeci	fied c	apa	citar	nce v	alue	es				
Max.		0.81:	3		448	1	.8034	1	2.20	98	1	794		0.940	,	3.3		1														-				
Thickness		0.03)) 57)		0.071		(0.08			110)		0.03		(0.1																				
			/	(,	1 0		·	(0.00	,	(3.)	`		/	(L																		

101317

High Voltage MLC Chips Tin/Lead Termination "B" - 600V to 5000V Applications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

NEW 630V RANGE

HOW TO ORDER

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

* FLEXITERM is not available in the LD40 Style

** The LD40 Style is not available on 7" Reels.

*** AVX offers nonstandard chip sizes. Contact factory for details.

* Not all values are supported in Automotive grade. Please contact factory for availability

DIMENSIONS

millimeters (inches)

NOT RoHS Compliant

SIZE	LD05 (0805)	LD06 (1206)	LD10* (1210)	LD08* (1808)	LD12* (1812)	LD13* (1825)	LD20* (2220)	LD14* (2225)	LD40* (3640)
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(L) Lengui	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)	(0.100)
(t) min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
terminal max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

*Reflow Soldering Only

98

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available.

Tin/Lead Termination "B" - 600V to 5000V Applications

NP0 (C0G) Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTA	GE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000/030	max.	330 pF	1200 pF	2700 pF	3300 pF	5600 pF	0.012 µF	0.012 pF	0.018 µF	0.047 µF
1000	min.	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	180 pF	560 pF	1500 pF	2200 pF	3300 pF	8200 pF	0.010 pF	0.010 µF	0.022 µF
1500	min.	-	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1500	max.	_	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	0.010 µF
2000	min.	-	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	_	120 pF	270 pF	330 pF	1000 pF	1800 pF	2200 pF	2700 pF	6800 pF
2500	min.	-	-	-	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2500	max.	-	-	-	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
3000	min.	-	-	-	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	-	-	-	120 pF	330 pF	820 pF	1000 pF	1200 pF	2700 pF
4000	min.	-	-	-	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	_	-	-	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
5000	min.	-	-	-	_	-	-	10 pF	10 pF	10 pF
5000	max.	_		-	_	_	_	220 pF	270 pF	820 pF

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTA	GE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF	0.010 µF	0.010 µF	0.010 µF
000/030	max.	6800 pF	0.022 µF	0.056 µF	0.068 µF	0.120 µF	0.390 µF	0.270 µF	0.330 µF	0.560 µF
1000	min.	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF
1000	max.	1500 pF	6800 pF	0.015 µF	0.018 µF	0.039 µF	0.100 µF	0.120 µF	0.150 µF	0.220 µF
1500	min.	-	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1500	max.	-	2700 pF	5600 pF	6800 pF	0.015 µF	0.056 µF	0.056 µF	0.068 µF	0.100 µF
2000	min.	-	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	-	1500 pF	3300 pF	3300 pF	8200 pF	0.022 µF	0.027 µF	0.033 µF	0.027 µF
2500	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2300	max.	-	-	-	2200 pF	5600 pF	0.015 µF	0.018 µF	0.022 µF	0.022 µF
3000	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	-	-	-	1800 pF	3900 pF	0.010 µF	0.012 µF	0.015 µF	0.018 µF
4000	min.	-	-	-	-	-	-	-	-	100 pF
4000	max.	-	-	-	-	-	-	-	-	6800 pF
5000	min.	-	_	-	-	_	-	-	-	100 pF
5000	max.	-	_	_	–	_	-	-	-	3300 pF

High Voltage MLC Chips FLEXITERM[®] - 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®.

The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

1808	A T	C ⊺	272	K	▲ │	Z	1 	A
AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 ***	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient COG = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF =105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level	Termination* Z=FLEXITERM® 100% Tin (RoHS Compliar	Packaging 2 = 7" Reel 4 = 13" Reel nt)	Special Code A = Standard

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

*** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS

MILLIMETERS (INCHES)

SIZE		0805	1206	1210*	1808*	1812*	1825*	2220*	2225*
(L) Length		2.10 ± 0.20 (0.083 ± 0.008)	3.30 ± 0.30 (0.130 ± 0.012)	3.30 ± 0.40 (0.130 ± 0.016)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)
(W) Width		1.25 ± 0.20 (0.049 ±0.008)	$1.60^{+0.30}_{-0.10}$ (0.063 $^{+0.012}_{-0.004}$)	2.50 ± 0.30 (0.098 ± 0.012)	2.00 ± 0.20 (0.079 ± 0.008)	3.20 ± 0.30 (0.126 ± 0.012)	6.30 ± 0.40 (0.248 ± 0.016)	5.00 ± 0.40 (0.197 ± 0.016)	6.30 ± 0.40 (0.248 ± 0.016)
(T) Thickness	s Max.	1.35 (0.053)	1.80 (0.071)	2.80 (0.110)	2.20 (0.087)	2.80 (0.110)	3.40 (0.134)	3.40 (0.134)	3.40 (0.134)
(t) terminal	min. max.	0.50 ± 0.20 (0.020 ± 0.008)	0.60 ± 0.20 (0.024 ± 0.008)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)

*Reflow Soldering Only

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available.

NP0 (COG) Dielectric Performance Characteristics

Capacitance Range	10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NP0 (C0G) CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

	512								_		1010						4.0	00							4.0	10			
Case Size Soldering	Ret	0805 flow/W	lave		Ref	1206 low/W					1210 flow 0	nlv						08 w Only							18 Reflov				
(L) Length mm	2	.10 ± 0.	20		3.	30 ± 0.	30			3.3	30 ± 0.4	40					4.60 :	± 0.50					_		4.60 :	± 0.50			
· · · · · (III.)		083 ± 0. .25 ± 0.		<u> </u>		30 ± 0. ± 0.30/			<u> </u>		<u>30 ± 0.0</u> 50 ± 0.0					(<u>± 0.020</u> ± 0.20)						0.181 ± 3.20 ±)		
W) Width (in.)	(0.0)49 ± 0.	20 008)	(0.063	± 0.012	/-0.004	4)		(0.0	98 ± 0.0	012)				(0.079 :	± 0.008)					(0.126 :	± 0.012)		
(T) Thickness mm		1.35				1.80					2.80						2.	20							2.	80			
(11.)	0	(0.053 .50 ± 0.				(0.071) 60 ± 0.					(0.110) 75 ± 0.3							087) ± 0.35							<u>(0.1</u> 0.75 :				
(t) Terminal max	(0.0	020 ± 0.	008)		(0.0	24 ± 0.	008)			(0.0	30 ± 0.0	014)				. (0.030 :	± 0.014)					. (0.030 ±	£ 0.014	.)		
Voltage (V) Cap (pF) 1.5 1R5	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF) 1.5 1R5 1.8 1R8	A	A		X	X		X	X	<u> </u>																				
2.2 2R2	A	A		X	X	X	X	X																					
2.7 2R7	Α	Α		Х	X	X	Х	X								С	С	С	С	С									
3.3 3R3 3.9 3R9	A A	A	<u> </u>	X X	X X	X X	X X	X X								C C	C C	C C	C C	C C									
4.7 4R7	A	A	-	X	x	X	x	x	<u> </u>							C	C	C	C	C									
5.6 5R6	A	A		X	X	X	X	X								C	C	C	C	С									
6.8 6R8	A	Α		Х	Х	X	Х	X								С	С	С	С	С									
8.2 8R2 10 100	A	A		X	X		X			C	D	D	D	C	C	C C	C C	C C	C C	C C	C	C	C	6	C	C	C	C	F
10 100	A	A	A	X	X	X	X	X	C	C	D	D	D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
15 150	A	A	Α	Х	Х	Х	Х	Х	C	С	D	D	D	С	C	С	C	C	С	C	C	С	С	С	C	C	С	С	E
18 180	A	A	A	X	X	X	X	X	C	C	D	D	D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
22 220	A A	A	A A	X X	X X	X X	X X	X	C C	C C	D D	D D	D D	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	E
33 330	A	A	Α	X	Х	X	D	D	С	С	D	D	D	С	С	C	С	С	C	С	С	С	C	С	С	С	С	С	Е
39 390	A	Α	A	Х	Х	Х	D	D	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	E
47 470 56 560	A A	A	A A	X	X X	M	D C	D C	C C	C C	D D	D C	D C	C C	C C	C C	C C	C C	C C	C C	С	C C	C C	C C	C C	C C	C C	C C	E
68 680	A	A	A	X	X	M	C	C	C	C	D	C	C	C	C	C	C	C	C	C		C	C	C	C	C	C	C	F
82 820	X	X	X	X	X	C	С	C	С	C	D	C	C	C	С	C	С	Č	Č	C		C	C	C	C	С	C	С	F
100 101	Х	Х	Х	Х	Х	С	С	С	С	С	С	С	С	С	С	С	С	С	F	F		С	С	С	С	С	С	С	F
120 121 150 151	C C	C C	C C	X	X X	C C	E	E	C C	C C	C C	C F	C F	C C	C C	C C	C	C F	F	F		C C	C	C C	C C	C C	C C	C C	G G
180 181	C	C	c	X	x	E	E	E	C	C	E	E	E	C	C	C	F	F	F	F		C	C C	C	C	C	F	F	
220 221	С	С		Х	Х	Е	Е	Е	С	С	Е	Е	Е	С	С	С	F	F	F	F		С	С	С	С	С	F	F	
270 271	C	C		C	C	E	E	E	C C	C	E	E	E	С	C	C	F	F	F	F		C	C	C	C	C F	F	F	
330 331 390 391	C C	C C		C C	C C	E	E	E	C	C C	E	E	E	C C	C C	F	F	F	F	F		C C	C C	C C	F	F	F	F	
470 471	C	C		C	c	E	E	E	C	C	E	E	E	C	C	F	F	F	F	F		C	Č	F	F	F	F	F	
560 561	С	С		С	С	E			С	С	Е	E	E	С	С	F	F	F				С	С	F	F	F	F	F	
680 681 750 751	C C	C C		C E	C E	E			C C	C C	E	F G	F G	C C	C C	F	F	F				C C	C C	F	F	F	G	G G	
820 821	C	C		E	E	E			C	C	E	G	G	C	C	F	E	E				C	C	F	F	F	G	G	
1000 102		-		E	E	E			C	C	E			C	C	F	E	E				C	C	F	F	F	G	G	
1200 122				E	E				С	С	E			E	E	F	E	E				С	С	F	E	E			
1500 152				E	E				C C	C C	G G			E	E	F						C C	C C	F	F	F			
2200 222	1	1		E	E				E	E	3			E	E							C	C	E	G	G			\vdash
2700 272				Е	E				Е	Е				Е	Е							С	С	Е	G	G			
3300 332 3900 392				E	E				E	E				E	E			<u> </u>	<u> </u>			C C	C C	F					\vdash
4700 472	-	+	-			-			E	E				F	E							C	C	G					$\left - \right $
5600 562									E	E				E	E							C	C						
6800 682														F	F							С	С						
8200 822	-	+	-			-			├──											-		E	E				-		$\left - \right $
Cap (µF) 0.010 103 0.012 123									—											-		F	F						$\left - \right $
0.012 123			<u> </u>	—		<u> </u>																⊢ G	G						\vdash
0.015 153																						G	G						\vdash
0.018 183																				-									$\left - \right $
0.022 223	1	1																		-				-					┝─┤
0.033 333	1	1																-		-				-					$\left - \right $
0.047 473	1	1																-		-				-					$\left - \right $
0.068 683	1	1																		-				-					$\left - \right $
0.100 104	1	+	<u> </u>			<u> </u>																	-						-
Voltage (V)	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case Size		0805				1206					1210							08								12			

NP0 (C0G) CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

		_													0000	•								000				
	Case Size						825							-	2220	-								2225				
	Soldering	nm					$\frac{0}{0} + 0.50$	/				_			eflow (eflow (.72 ± 0				
(L) Len	ath	mm ìn.)					0 ± 0.50 1 ± 0.02								.70 ± 0 224 ± 0									.72 ± 0 25 ± 0				
		nm					0.02 ± 0.02 ± 0.40								.00 ± 0									.25 ± 0				
W) Wid	th	ìn.)					3 ± 0.40								.00 ± 0 197 ± 0									250 ± 0				
(r	nm					3.40							(0.	3.40								(0.2	3.40				
(T) Thic		ìn.)					.134)								(0.13									(0.134				
(t) Term	ninal r	nm					5 ± 0.35								.85 ± 0								0	.85 ± 0	35			
	r	nax	600	600	1000		$) \pm 0.01$		0000	1000	600	600	1000)33 ± (10000	1000	5000	600	600	1000				0000	1000	5000
	Voltage (V) 1.5	1R5	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Cap (pF)	1.5	1R3																										
	2.2	2R2		1	1																				1			
	2.7	2R7							ĺ	1								1	ĺ				ĺ					
	3.3	3R3																									 	
	3.9	3R9							-			<u> </u>																
	4.7	4R7 5R6																										
	6.8	6R8																										
	8.2	8R2																										
	10	100	Е	Е	Е	E	E	E	Е	E	Е	Е	Е	E	Е	Е	E	E	E	Е	E	E	Е	E	Е	Е	F	F
	12	120	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	15	150	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	18	180 220	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	27	270	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	33	330	Е	Е	E	E	E	E	Е	Е	Е	Е	E	E	E	E	E	Е	Е	Е	Е	Е	Е	E	E	E	F	F
	39	390	Е	E	E	E	E	E	E	E	Е	E	E	E	E	E	E	E	E	Е	E	E	E	E	E	E	F	F
	47	470	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G
	<u> </u>	560 680	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G G
<u> </u>	82	820	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G
	100	101	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G
	120	121	Е	E	E	E	E	E	E	F	Е	Е	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G
	150	151	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G
	<u>180</u> 220	181 221	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G G	G G
	220	271	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	G
	330	331	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	-
	390	391	Е	E	E	E	E	E	E		Е	Е	E	E	E	E	E			E	Е	E	E	E	E	E	G	
	470	471	E	E	E	E	E	E	E		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	
	560 680	561 681	E	E	E	E	E	E F	E		E	E	E	E	E	E F	E F			E	E	E	E	E	E	E	G	
	750	751	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	E	E		
	820	821	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	F	E		
	1000	102	Е	E	E	E	E	F	F		Е	Е	E	E	E	F	F			E	E	E	E	E	E	E		
	1200	122	E	E	E	E	E	G	G		E	E	E	E	E	G	G			E	E	E	E	E	F	F	 	
	1500 1800	152 182	E	E	E	F	F	G G	G G		E	E	E	F	F	G	GG			E	E	E	E	E	F G	F G		
	2200	222	E	E	E	G	G				E	E	E	G	G					E	E	E	E	E		0		
	2700	272	E	E	E	G	G				E	E	E	G	G					E	E	E	F	F				
	3300	332	Е	E	E	G	G				Е	E	E	G	G					Е	E	E	F	F			<u> </u>	
	3900	392	E	E	E	G	G				E	E	E	G	G					E	E	E	G	G			 	
	4700 5600	472 562	E F	E F	E F	G G	G				E	E F	E F	G	G					F	F	F	G G	G G				
	6800	682	F	F	F						F	F	F							F	F	F	G	G				
	8200										G	G	G							G	G	G		-				
Cap (µF)	0.010																			G	G	G						
	0.012																			G	G	G					<u> </u>	
	0.015																			G	G	G						
	0.018	223																		G G	G G	G G						
<u> </u>	0.022	333				<u> </u>		<u> </u>			<u> </u>						+			G	G	G						
		473					1			1	1						1	1	1	G	G	G				1		
	0.056	563																		G	G	G						
		683																		G	G	G						
L,	0.100 /oltage (V)	104	600	620	1000	1500	2000	2500	2000	4000	600	620	1000	1500	2000	2500	2000	4000	5000	G	G	1000	1500	2000	2500	2000	4000	5000
	Case Size		000	1030	1000		1 <u>2000</u>	2300	13000	14000	000	030	1000	1300	2000 2220		10000	4000	1000	000	030	1000	11300	2225		10000	-+000	0000

NOTE: Contact factory for non-specified capacitance

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size		0805				1206					1210						18	08							18	12			
Soldering	Ret	flow/W			Ref	low/W					flow 0						Reflo								Reflov				
(L) Length mm (in.)	1 2	2.10 0.2 083 ± 0.	20		3.	.30 ± 0. 30 ± 0.	30			3	.30 0.4 30 0.0	0					4.60 :	± 0.50 ± 0.020)						4.60 ±)		
W) Width mm (in.)	-	1.25 0.2)49 ± 0.	20	(1.60	+0.30/ +0.012	-0.10	l)		2	.50 0.3 98 0.0	0					2.00	0.20 ± 0.008							3.20 ±	0.30			
(T) Thickness mm (in.)		1.35				1.80					2.80						2.	20 087)	Î						2.8	30			
(t) Terminal mm	0	.50 ± 0.				$\frac{(0.071)}{.60 \pm 0.0}$.75 0.3						0.75 :								0.75 ±				
Thax Inax		$\frac{120 \pm 0}{100}$		600		$\frac{124 \pm 0}{1000}$		0000	600		30 ± 0.0		0000	(00)	(00			± 0.014		0000	4000	600	600		(0.030 ±			0000	4000
Voltage (V) Cap (pF) 100 101	600 X	630 X	1000 C	600 C	630 C	1000 E	1500 E	2000 E	600 E	630 E	1000 E	1500 E	2000 E	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
120 121	X	X	C	C C	C	E	E	E	E	E	E	E	E																
150 151	X	X	C C	C C	C	E	E	E	F	E	E	E	E																
180 181	X	X	C	C	C	E	E	E	E	E	E	E	E																
220 221	x	x	C	C	C	E	E	E	E	E	E	E	E																
270 271	X	X	c	c	c	E	E	E	E	E	E	E	E									Е	Е	Е	Е	Е			
330 331	X	X	c	c	c	E	E	E	E	E	E	E	E	Е	Е	Е	Е	Е	Е	F		E	E	E	E	E			
390 391	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E			
470 471	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E	E	E	
560 561	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	E	E	
680 681	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
750 751	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
820 821	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1000 102	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	
1200 122	Х	Х	С	С	С	E	E	E	Е	Е	Е	Е	E	Е	Е	E	E	E	F	F		F	F	F	F	F	F	F	
1500 152	Х	Х	С	С	С	E	E	E	Е	Е	Е	Е	E	Е	Е	E	E	E	F	F		F	F	F	F	F	G	G	
1800 182	Х	Х		С	С	E	Е	E	Е	Е	Е	Е	Е	Е	Е	E	E	E	F	F		F	F	F	F	F	G	G	
2200 222	Х	Х		С	С	E	Е	Е	Е	Е	Е	F	Е	Е	Е	E	F	F	F			F	F	F	F	F	G	G	
2700 272	Х	Х		С	С	Е	Е		Е	Е	Е	F	Е	Е	Е	E	F	F				F	F	F	F	F	G	G	
3300 332	Х	Х		С	С	Е			Е	Е	Е	F	Е	Е	Е	E	F	F				F	F	F	F	F	G	G	
3900 392	Х	Х		С	С	E			Е	Е	Е	G		Е	Е	E	F					F	F	F	F	F	G	G	
4700 472	Х	Х		С	С	Е			Е	Е	Е	G		Е	Е	Е	F					F	F	F	F	F	G	G	
5600 562	Х	Х		С	С	Е			Е	Е	Е	G		Е	Е	Е	F					F	F	F	G	G			
6800 682	Х	Х		С	С	E			E	Е	E			Е	E	E	F					F	F	F	G	G			
8200 822	_	Х		С	С	Е			E	Е	E			Е	E	E						F	F	Е	G	G			
Cap(µF) 0.010 103	_	С		С	С	E			E	Е	E			E	E	E						F	F	F	G	G			
0.015 153	_	С		E	E	E			E	E	E			F	F	F						F	F	F	G				
0.018 183	С	С		E	E				E	E	E			F	F	F						F	F	G					
0.022 223	С	С		E	E				E	E	E			F	F							F	F	G					
0.027 273				E	E				E	E				F	F							F	F	G					
0.033 333				E	E				E	E				F	F								F	G					
0.039 393									E	E				F	F							F	F	G G					
0.047 473									F	F				F	F							F	F	6					$\left - \right $
0.056 563		+							F	F				F	F							F	F						$\left - \right $
0.082 823	-	+	-						F	F												F	F						┝─┤
0.100 104	-	+	-						F	F												F	F						$\left - \right $
0.150 154																						G	G						$\left - \right $
0.220 224																						G	G						
0.270 274		1	<u> </u>																										
0.330 334	1																												
0.390 394		1																						1					
0.470 474																													
0.560 564	1	1			1	1	1										1	1	1	1				1					
0.680 684		1																			1			1					
0.820 824		1			İ	İ	İ										İ	İ	İ	İ				1					
1.000 105		1				İ	İ										İ	İ	İ					1	İ				
Voltage (V)	600	630		600	630			2000	600				2000	600	630	1000			2500	3000	4000	600	630	1000			2500	3000	4000
Case Size		0805				1206)				<u>1210</u>						18	08							18	12			

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

indice indite indite indite	Case Size					325								2220									2225									3640				
	Soldering			_			/				_																									
W mm m I <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>))</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>))																													
Image: 1 bit with the set of					6.30	0.40	~																													
Theory D D D D <td></td> <td>-</td> <td></td> <td></td> <td>0.248</td> <td>± 0.01</td> <td>6)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>116)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(0.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(0.2</td> <td></td> <td>.010)</td> <td></td> <td></td> <td></td>		-			0.248	± 0.01	6)								116)							(0.2									(0.2		.010)			
UN-base (%) UN-base (%)	Thickness (in.)				(0.	134)							(0.134									(0.100)								(0.100				
Undep Und </td <td></td> <td></td> <td></td> <td>((</td> <td></td> <td></td> <td>4)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				((4)																													
Car by 10 10 1 1 1 1		600	630					13000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000
Image: Normal and the second																																				
1 1	120 121																																			
1 1																																				
20. 27 30. 37<																																				
30. 37 . <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>			_					-															-								-					
90 91<		_	_	<u> </u>	<u> </u>		<u> </u>								<u> </u>										<u> </u>											\vdash
An An An An An <td></td> <td></td> <td>+</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			+		-	-																														
600 601 600 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																																				
700 700 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																							L													
Son Bar I </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																																				
Image: 100 102 F <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																																				
1000 12 P F <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																																				
1300 130 15 F </td <td></td> <td>F</td> <td></td> <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td>F</td> <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		F			F	F						F								F		F		F	F											
1000 1200 12 F<		· ·				_																														
220 22 F						_																														
2200 220 72 F F F F <td></td> <td><u> </u></td> <td>_</td> <td>_</td> <td></td> <td>F</td> <td>_</td> <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td>		<u> </u>	_	_		F	_				· ·												_											_	_	_
330 320 7 <th7< th=""> 7 7 7</th7<>		<u> </u>		_	_	F	_																_													
4700 67 F <td></td> <td>F</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>		F	_							F									F	F				F	F						_					
500 562 F <td>3900 392</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td></td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>G</td> <td></td> <td></td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td></td> <td></td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td></td>	3900 392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
6800 682 F <td>4700 472</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td></td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>G</td> <td></td> <td></td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td></td> <td></td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td>G</td> <td></td>	4700 472	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
base base <th< td=""><td>5600 562</td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td></td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td>G</td><td></td><td></td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td>F</td><td></td><td></td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td>G</td><td></td></th<>	5600 562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
Cap (µF) 0010 163 F F G G G G <	6800 682	F	F	_	G	G	G	G			F	F	F	F	G	G			F	F	F		_	G	G			G	G	G	G	G	G	_	G	
10015 133 F </td <td></td> <td>· ·</td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>		· ·	_	_		_	_	_															_							_				_		
018 8 F F F F F F F F F F F F F G			_	_	_	_	_	G			· ·					G							_													\square
0022 22 F F F F G G C F F G G G G		· ·	_	_	_	_	G																		G						-	-		_		
0027 27 F F F F F F F F F F F F G 0 F F F F G 0 F F F F G 0 F F F F G 0 F F F F G <td></td> <td><u> </u></td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td>		<u> </u>	_	_		_									G								_											G		
And A			_		_	G																	_	G									G			\vdash
0039 333 F F F F F F F F F F F F F G 0 F F F G 0 F F F G 0 F F F G 0 F F F G 0 G <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td>\vdash</td>				_			<u> </u>							G									_									G				\vdash
Outro O <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>┼──┨</td>		· ·																					G													┼──┨
0065 653 F F F F F F F F F F F F F G 0 G <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>├─- </td>			_	_	_						<u> </u>												-													├ ─-
0068 663 F F G I I F F G I I F F G I <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td> </td> <td></td> <td></td> <td>+</td>			_	_	_	-	-																-								_					+
0082 823 F F G I F F G I I F F G I <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>├──┨</td>				_			-																													├──┨
0100 104 F F G I F F G I I F F G I I F G I <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>1</td> <td> </td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>+</td>			_			1									-										-											+
0110 154 F F F F G I I F F G I I F F G I <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td>			_			1	1	1																												
0.270 274 F </td <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td>		F	F							F	F								F	F																\vdash
0.330 344 F </td <td>0.220 224</td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.220 224	F	F								F	G							F	F								G	G							
0.300 344 F </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																																				
0470 474 F <td></td> <td><u> </u></td> <td>_</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td>		<u> </u>	_			<u> </u>		<u> </u>			· ·																									\vdash
0.560 564 6 6 6 6 6 6 6 7 F F 8 8 8 6 6 6 9 </td <td></td> <td>_</td> <td>_</td> <td></td> <td>I</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>ļ</td> <td> </td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td> </td> <td><u> </u></td> <td> </td> <td></td> <td></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td> </td> <td> </td> <td> </td> <td></td> <td>⊢ </td>		_	_		I							ļ			<u> </u>										<u> </u>					<u> </u>	<u> </u>					⊢
0680 684 <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td> </td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td> </td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td>├─┤</td></th<<>																					-		-													├ ─┤
0820 624 0 <td></td> <td>0</td> <td>6</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td> </td> <td></td> <td></td> <td></td> <td>0</td> <td>6</td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>├ </td>		0	6	-										-							-		-					0	6							├
1.000 105 600 630 1000 1500 2000 4000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000						1													_				1													+
Voltage (V) 600 630 1000 1500 2000 2500 3000 4000 600 630 1000 1500 2000 2500 3000 4000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2500 3000 4000 5000 600 630 1000 1500 2000 2000 2000 2000 4000 5000			1			1		1																					1	1						\vdash
Case size 1825 2220 2225 3640		600	630	1000			2500	3000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000	1500			3000	4000	5000
	Case Size				18	525					_			2220			_					_	2225)	_		_					3640				

Letter	А	С	E	F	G	Р	Х
Max.	0.813	1.448	1.8034	2.2098	2.794	3.048	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.120)	(0.037)

NOTE: Contact factory for non-specified capacitance values

High Voltage MLC Chip Capacitors For 600V to 3000V Automotive Applications - AEC-Q200

Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cards). AVX offers high voltage ceramic capacitors qualified according to AEC-Q200 standard.

High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

To improve mechanical and thermal resistance, AVX recommend to use flexible terminations system - FLEXITERM®.

HOW TO ORDER

1210	C	C	223	K	4	Ţ	1	<u>A</u>
Size 1206 1210 1808 1812	Voltage C = 630V A = 1000V S = 1500V G = 2000V	Dielectric X7R = C	Capacitance Code 2 Sig. Digits + Number of Zeros e.g. 103 = 10nF	Capacitance Tolerance K = ±10% M = ±20%	Failure Rate 4=Automotive	Terminations T = Plated Ni and Sn Z = FLEXITERM [®]	Packaging 1 or 2 = 7" Reel 3 or 4 = 13" Reel	Special Code A = Std. Product
2220	W = 2500V H = 3000V		(223 = 22nF)		k	AVX offers nonstandar	d case size. Contact fa	actory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact AVX for recommendations

CHIP DIMENSIONS DESCRIPTION

L = Length W = Width T = Thickness t = Terminal

(See capacitance range chart on page 128)

X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

Parameter/Test	Specification Limits	Measuring Conditions	
Operating Temperature Range	-55°C to +125°C	Temperature Cycle Chamber	
Capacitance Dissipation Factor	within specified tolerance 2.5% max.	Freq.: 1kHz ±10% Voltage: 1.0Vrm s ±0.2Vrms	
Capacitance Tolerance	±5% (J), ±10% (K), ±20% (M) X7R = ±15%	$T = +25^{\circ}C, V = 0Vdc$	
Temperature Characteristics	X/R = ±15%	Vdc = 0V, T = (-55°C to +125°C) T = +25°C, V = 500Vdc T = +125°C, V = 500Vdc (t ≥ 120 sec, I ≤ 50mA)	
Insulation Resistance	100GQ min. or 1000MQ • μF min. (whichever is less) 10GQ min. or 100MQ • μF min. (whichever is less)		
Dielectric Strength	No breakdown or visual defect	120% of rated voltage t ≤ 5 sec, l ≤ 50mA	

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case S				1206					210					808						1812						2220		
Solder	ring		Ref	low/W	Vave			Reflo	wOnly				Reflo	wOnly					Re	flow0	nly			ReflowOnly				
(L) Length	mm	1	3.	20 ± 0.	.20		1		± 0.40		4.57 ± 0.25 4.50 ± 0.30				1		.70 ± 0.											
(L) Length	(in.)			26 ± 0.				0.130 ± 0.016 (0.180 ± 0.010)						77 ± 0.						24 ± 0.								
W) Width	mm			60 ± 0.					± 0.30					± 0.25			3.20 ± 0.20					5.00 ± 0.40						
m) maar	(in.)		(0.0	63 ± 0.					± 0.012			(± 0.010)		(0.126 ± 0.008)					(0.197 ± 0.016)						
(T) Thickness	mm (m)			1.52					70					03						2.54						3.30		
()	(in.) mm		0.	<u>(0.060</u> 25 (0.0)			0.25.0	067) 0.010)				0.25 (0.010)					0.0	(0.100 25 (0.0) 10)			(0.130) 0.25 (0.010)				
(t) Terminal	max			23 (0.0 75 (0.0					0.030)					0.040))2 (0.0				1.02 (0.040)				
Voltage		630				2500	630			2000	600	1000		2000	1 2500	2000	630	1000			2500	3000	4000	630			2000	1 2000
Cap (pF)	100 101		1000	1500	2000	2500	030	1000	1500	2000	030	1000	1500	2000	2500	3000	030	1000	1500	2000	2500	3000	4000	030	1000	1500	2000	3000
Cap (pr)	120 121																										<u> </u>	
	150 151																										'	
	180 181																											
																											<u> </u>	
	220 221 270 271																											
-																											<u> </u>	
	330 331 390 391																										<u> </u>	\vdash
-	470 471																										<u> </u>	\vdash
	560 561																										<u> </u>	\vdash
																											<u> </u>	\vdash
																											<u> </u>	\vdash
	820 821																											
	1000 102																											
	1200 122																											
	1500 152																											
	1800 182																											
	2200 222																											
	2700 272																											
	3300 332																											
	3900 392									<u> </u>																		
	4700 472																											
	5600 562																											
	6800 682																											
0 (5)	8200 822																											
Cap (µF)	0.01 103																											
	0.012 123																											
	0.015 153																											
	0.018 183																											
	0.022 223																											
	0.027 273																										<u> </u>	
	0.033 333																										<u> </u>	\square
	0.039 393																										<u> </u>	
	0.047 473																										<u> </u>	
	0.056 563				<u> </u>		<u> </u>	<u> </u>													<u> </u>				<u> </u>	<u> </u>	<u> </u>	\vdash
	0.068 683																										'	\square
	0.082 823				L		I			L				L			L										<u> </u>	$ \longrightarrow $
	0.100 104		I		L		I	L		L				I	I	I	I					I	I			I	 '	L
	0.120 124																					<u> </u>					<u> </u>	\square
	0.150 154																											
Voltage		630	1000			2500	630			2000	630	1000			2500	3000	630	1000	1500		2500	3000	4000	630	1000		2000	3000
Case S	SIZE	I		1206			1	12	10				18	808						1812						2220		

NOTE: Contact factory for non-specified capacitance values

Part Number Example CDR01 thru CDR06

MILITARY DESIGNATION PER MIL-PRF-55681

 $\mathsf{NOTE:}$ Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06

Voltage Temperature Limits:

- $BP = 0 \pm 30 \text{ ppm/°C} \text{ without voltage; } 0 \pm 30 \text{ ppm/°C} \text{ with rated voltage}$ from -55°C to +125°C
- BX = $\pm 15\%$ without voltage; $\pm 15 25\%$ with rated voltage from $-55^{\circ}C$ to $\pm 125^{\circ}C$

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J \pm 5%, K \pm 10%, M \pm 20%

Termination Finish:

- M = Palladium silver
- N = Silver-nickel-gold
- S = Solder coated final with a minimum of 4 percent lead
- T = Silver
- U = Base metallization-barrier metal-solder coated
- (tin/lead alloy, with a minimum of 4 percent lead) W = Base metallization-barrier metal-tinned
- (tin or tin/lead alloy) Y = Base metallization-barrier metal-tin (100 percent)
- Z = Base metallization-barrier metal-tinned
- (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

Per	AVX	Length (L)		Thickr	iess (T)	D		Termination Band (t)	
MIL-PRF-55681	Style	Length (L)	Width (W)	Min.	Max.	Min.	Max.	Min.	Max.
CDR01	0805	.080 ± .015	.050 ± .015	.022	.055	.030	-	.010	-
CDR02	1805	.180 ± .015	.050 ± .015	.022	.055	-	-	.010	.030
CDR03	1808	.180 ± .015	.080 ± .018	.022	.080	-	-	.010	.030
CDR04	1812	.180 ± .015	.125 ± .015	.022	.080	-	-	.010	.030
CDR05	1825	+.020 .180 ₋ .015	+.020 .250 ₋ .015	.020	.080	_	_	.010	.030
CDR06	2225	.225 ± .020	.250 ± .020	.020	.080	-	-	.010	.030

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*

*For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

Military Part Number Identification CDR01 thru CDR06

	CDR01 thru CDR06 to MIL-PRF-55681										
Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military Type Designation/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC		
AVX Style 080	05/CDR01				AVX Style 1808	/CDR03					
CDR01BP100B-	- 10	J,K	BP	100	CDR03BP331B	330	J,K	BP	100		
CDR01BP120B	- 12	J	BP	100	CDR03BP391B	390	J	BP	100		
CDR01BP150B	- 15	J,K	BP	100	CDR03BP471B	470	J,K	BP	100		
CDR01BP180B	- 18	J	BP	100	CDR03BP561B	560	J	BP	100		
CDR01BP220B	- 22	J,K	BP	100	CDR03BP681B	680	J,K	BP	100		
CDR01BP270B	- 27	J	BP	100	CDR03BP821B	820	J	BP	100		
CDR01BP330B		J,K	BP	100	CDR03BP102B	1000	J,K	BP	100		
CDR01BP390B		J	BP	100	CDR03BX123B	12,000	K	BX	100		
CDR01BP470B		J,K	BP	100	CDR03BX153B	15.000	K,M	BX	100		
CDR01BP560B		J	BP	100	CDR03BX183B	18.000	K	BX BX	100 100		
CDR01BP680B		J,K	BP	100	CDR03BX223B	22,000	K,M	BX			
CDR01BP820B		J	BP	100	CDR03BX273B	27.000 33.000	K	BX	100		
CDR01BP101B		J,K	BP	100	CDR03BX333B	39.000	K,M	BX	100 50		
CDR01B121B		J,K	BP,BX	100	CDR03BX393A CDR03BX473A	47.000	K K,M	BX	50		
CDR01B151B		J,K	BP,BX	100	CDR03BX473A	56.000	K, IVI	BX	50		
CDR01B181B		J,K	BP,BX	100	CDR03BX683A	68.000	K,M	BX	50		
CDR01BX221B		K,M K	BX BX	100 100	AVX Style 1812		1,111	DX			
CDR01BX271B CDR01BX331B		K,M	BX	100	CDR04BP122B	1200	J	BP	100		
CDR01BX391B		K, IVI	BX	100	CDR04BP122B CDR04BP152B	1200	J,K	BP BP	100		
CDR01BX391B-		K,M	BX	100	CDR04BP152B	1800	J,K	BP	100		
CDR01BX561B		K	BX	100	CDR04BP182B	2200	J,K	BP	100		
CDR01BX681B		K,M	BX	100	CDR04BP272B	2700	J,K	BP	100		
CDR01BX821B		K	BX	100	CDR04BP332B	3300	J,K	BP	100		
CDR01BX102B		K,M	BX	100	CDR04BX393B	39.000	K	BX	100		
CDR01BX122B		K	BX	100	CDR04BX473B	47.000	K,M	BX	100		
CDR01BX152B		K,M	BX	100	CDR04BX563B	56.000	K	BX	100		
CDR01BX182B		K	BX	100	CDR04BX823A	82.000	ĸ	BX	50		
CDR01BX222B		K,M	BX	100	CDR04BX104A	100,000	K,M	BX	50		
CDR01BX272B		ĸ	BX	100	CDR04BX124A	120,000	ĸ	вх	50		
CDR01BX332B	- 3300	K,M	BX	100	CDR04BX154A	150.000	K,M	BX	50		
CDR01BX392A	- 3900	K	BX	50	CDR04BX184A	180.000	ĸ	вх	50		
CDR01BX472A	- 4700	K,M	BX	50	AVX Style 1825		•	•			
AVX Style 180)5/CDR02				CDR05BP392B	3900	J,K	BP	100		
CDR02BP221B-	- 220	J,K	BP	100	CDR05BP472B	4700	J,K	BP	100		
CDR02BP271B	- 270	J	BP	100	CDR05BP562B	5600	J,K	BP	100		
CDR02BX392B	- 3900	К	BX	100	CDR05BX683B	68,000	K,M	BX	100		
CDR02BX472B	- 4700	K,M	BX	100	CDR05BX823B	82,000	ĸ	BX	100		
CDR02BX562B	- 5600	К	BX	100	CDR05BX104B	100,000	K,M	BX	100		
CDR02BX682B	- 6800	K,M	BX	100	CDR05BX124B	120,000	K	BX	100		
CDR02BX822B	- 8200	К	BX	100	CDR05BX154B	150.000	K,M	BX	100		
CDR02BX103B	- 10,000	K,M	BX	100	CDR05BX224A	220.000	K,M	BX	50		
CDR02BX123A	- 12,000	K	BX	50	CDR05BX274A	270,000	К	BX	50		
CDR02BX153A		K,M	BX	50	CDR05BX334A	330,000	K,M	BX	50		
CDR02BX183A		K	BX	50	AVX Style 2225	/CDR06					
CDR02BX223A	- 22,000	K,M	BX	50	CDR06BP682B	6800	J,K	BP	100		
					CDR06BP822B	8200	J,K	BP	100		
	Add appropriat	e failure rate			CDR06BP103B	10,000	J,K	BP	100		
					CDR06BX394A	390.000	ĸ	BX	50		
L L	— Add appropriat	e termination f	inish		CDR06BX474A	470.000	K,M	BX	50		

Capacitance Tolerance

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

Part Number Example CDR31 thru CDR35

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage-Temperature Limits:

- BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C
- BX = $\pm 15\%$ without voltage; $\pm 15 25\%$ with rated voltage from -55° C to $\pm 125^{\circ}$ C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

MILITARY DESIGNATION PER MIL-PRF-55681

Part Number Ex	ample						
(example)	CDR31	BP	101	В	Κ	S	Μ
		T	T	Т	Т	Т	Т
MIL Style							
Voltage-Tempe Limits	rature						
Capacitance							
Rated Voltage							
Capacitance To	lerance						
Termination Fin	ish —						
Failure Rate							

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Termination Finish:

M = Palladium silver

- N = Silver-nickel-gold
- S = Solder coated final with a minimum of 4 percent lead
- T = Silver
- U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)
- W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)
- Y = Base metallization-barrier metal-tin (100 percent)
- Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

Per MIL-PRF-55681		AVX Style		Length (L)	Width (W)	Thickness (T)	D	Termination Band (t)		
Per MIL-PRF-55061	AVA SIJIE	(mm)	(mm)	Max. (mm)	Max. (mm)	Min. (mm)	Max. (mm)			
CDR31	0805	2.00	1.25	1.3	.50	.70	.30			
CDR32	1206	3.20	1.60	1.3	_	.70	.30			
CDR33	1210	3.20	2.50	1.5	—	.70	.30			
CDR34	1812	4.50	3.20	1.5	-	.70	.30			
CDR35	1825	4.50	6.40	1.5	-	.70	.30			

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

080620

Military Part Number Identification CDR32

CDR31 to MIL-PRF-55681/7									
Military Type Designation $1/$	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military T Designatio		Capacitance in pF	Capacitance tolerance	Rat ten
AVX Style 08	05/CDR31	(BP)			AVX Sty	vle 08	805/CDR31	(BP) con	ťd
CDR31BP1R0B	1.0	B,C	BP	100	CDR31BP1	01B	100	F,J,K	
CDR31BP1R1B	1.1	B,C	BP	100	CDR31BP1	11B	110	F,J,K	
CDR31BP1R2B	1.2	B,C	BP	100	CDR31BP1	21B	120	F,J,K	
CDR31BP1R3B	1.3	B,C	BP	100	CDR31BP1		130	F,J,K	
CDR31BP1R5B	1.5	B,C	BP	100	CDR31BP1		150	F,J,K	
CDR31BP1R6B	1.6	B,C	BP	100	CDR31BP1	61B	160	F,J,K	
CDR31BP1R8B	1.8	B,C	BP	100	CDR31BP1		180	F,J,K	
CDR31BP2R0B	2.0	B,C	BP	100	CDR31BP2		200	F,J,K	
CDR31BP2R2B	2.2	B,C	BP	100	CDR31BP2		220	F,J,K	
CDR31BP2R4B	2.4	B,C	BP	100	CDR31BP2	41B	240	F,J,K	
CDR31BP2R7B	2.7	B,C,D	BP	100	CDR31BP2	71B	270	F,J,K	
CDR31BP3R0B	3.0	B,C,D	BP	100	CDR31BP3	01B	300	F,J,K	
CDR31BP3R3B	3.3	B,C,D	BP	100	CDR31BP3	31B	330	F,J,K	
CDR31BP3R6B	3.6	B,C,D	BP	100	CDR31BP3		360	F,J,K	
CDR31BP3R9B	3.9	B,C,D	BP	100	CDR31BP3	91B	390	F,J,K	
CDR31BP4R3B	4.3	B,C,D	BP	100	CDR31BP4	31B	430	F,J,K	
CDR31BP4R7B	4.7	B,C,D	BP	100	CDR31BP4	71B	470	F,J,K	
CDR31BP5R1B	5.1	B,C,D	BP	100	CDR31BP5	11A	510	F,J,K	
CDR31BP5R6B	5.6	B,C,D	BP	100	CDR31BP5	61A	560	F,J,K	
CDR31BP6R2B	6.2	B,C,D	BP	100	CDR31BP6	21A	620	F,J,K	
CDR31BP6R8B	6.8	B,C,D	BP	100	CDR31BP6	81A	680	F,J,K	
CDR31BP7R5B	7.5	B,C,D	BP	100					,
CDR31BP8R2B	8.2	B,C,D	BP	100	AVX Sty	le ut	305/CDR31	(BX)	
CDR31BP9R1B	9.1	B,C,D	BP	100	CDR31BX4	71B	470	K,M	
CDR31BP100B	10	FJ,K	BP	100	CDR31BX5	61B	560	K,M	
CDR31BP110B	11	FJ,K	BP	100	CDR31BX6	81B	680	K,M	
CDR31BP120B	12	FJ,K	BP	100	CDR31BX8	21B	820	K,M	
CDR31BP130B	13	FJ,K	BP	100	CDR31BX1	02B	1,000	K,M	
CDR31BP150B	15	FJ,K	BP	100	CDR31BX1	22B	1,200	K,M	
CDR31BP160B	16	FJ,K	BP	100	CDR31BX1	52B	1,500	K,M	
CDR31BP180B	18	FJ,K	BP	100	CDR31BX1		1,800	K,M	
CDR31BP200B	20	F,J,K	BP	100	CDR31BX2		2,200	K,M	
CDR31BP220B	22	FJ,K	BP	100	CDR31BX2		2,700	K,M	
CDR31BP240B	24	F,J,K	BP	100	CDR31BX3		3,300	K,M	
CDR31BP270B	27	FJ,K	BP	100	CDR31BX3		3,900	K,M	
CDR31BP300B	30	FJ,K	BP	100	CDR31BX4		4,700	K,M	
CDR31BP330B	33	F,J,K	BP	100	CDR31BX5		5,600	K,M	
CDR31BP360B	36	FJ,K	BP	100	CDR31BX6		6,800	K,M	
CDR31BP390B	39	F,J,K	BP	100	CDR31BX8		8,200	K,M	
CDR31BP430B	43	FJ,K	BP	100	CDR31BX1		10,000	K,M	
CDR31BP470B	47	FJ,K	BP	100	CDR31BX1		12,000	K,M	
CDR31BP510B	51	F,J,K	BP	100	CDR31BX1		15.000	K,M	
CDR31BP560B	56	FJ,K	BP	100	CDR31BX1		18.000	K.M	
CDR31BP620B	62	F,J,K	BP	100				• • • • •	
CDR31BP680B	68	FJ,K	BP	100					
CDR31BP750B	75	FJ,K	BP	100		Ш			
CDR31BP820B	82	F,J,K	BP	100			 Add appropriat 	e failure rate	
CDR31BP910B	91	FJ,K	BP	100					
00101019100	21	10,1		100			- Add appropriat		

CDR31 to MII -PRF-55681/7

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

Military Type Designation $1/$	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 08	805/CDR31	(BP) con	ťd	
CDR31BP101B	100	F,J,K	BP	100
CDR31BP111B	110	F,J,K	BP	100
CDR31BP121B	120	F,J,K	BP	100
CDR31BP131B	130	F,J,K	BP	100
CDR31BP151B	150	F,J,K	BP	100
CDR31BP161B	160	F,J,K	BP	100
CDR31BP181B	180	F,J,K	BP	100
CDR31BP201B	200	F,J,K	BP	100
CDR31BP221B	220	F,J,K	BP	100
CDR31BP241B	240	F,J,K	BP	100
CDR31BP271B	270	F,J,K	BP	100
CDR31BP301B	300	F,J,K	BP	100
CDR31BP331B	330	F,J,K	BP	100
CDR31BP361B	360	F,J,K	BP	100
CDR31BP391B	390	F,J,K	BP	100
CDR31BP431B	430	F,J,K	BP	100
CDR31BP471B	470	F,J,K	BP	100
CDR31BP511A	510	F,J,K	BP	50
CDR31BP561A	560	F,J,K	BP	50
CDR31BP621A	620	F,J,K	BP	50
CDR31BP681A	680	F,J,K	BP	50
AVX Style 08	805/CDR31	(BX)		
CDR31BX471B	470	K,M	BX	100
CDR31BX561B	560	K,M	BX	100
CDR31BX681B	680	K,M	BX	100
CDR31BX821B	820	K,M	BX	100
CDR31BX102B	1,000	K,M	BX	100
CDR31BX122B	1,200	K,M	BX	100
CDR31BX152B	1,500	K,M	BX	100
CDR31BX182B	1,800	K,M	BX	100
CDR31BX222B	2,200	K,M	BX	100
CDR31BX272B	2,700	K,M	BX	100
CDR31BX332B	3,300	K,M	BX	100
CDR31BX392B	3,900	K,M	BX	100
CDR31BX472B	4,700	K,M	BX	100
CDR31BX562A	5,600	K,M	BX	50
CDR31BX682A	6,800	K,M	BX	50
CDR31BX822A	8,200	K,M	BX	50
CDR31BX103A	10,000	K,M	BX	50
CDR31BX123A	12,000	K,M	BX	50
CDR31BX153A	15.000	K,M	BX	50
CDR31BX183A	18.000	K,M	BX	50

Add appropriate termination finish

Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Military Part Number Identification CDR32

Military Type Designation $\underline{1}$ /	Capacitance in pF	Capacitance Tolerance	Rated temperature and Voltage- Temperature Limits	WVDC	Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance Tolerance	Rated Temperature and Voltage- Temperature Limits	WVDC
VX Style 12	206/CDR32	(BP)			AVX Style 08	05/CDR31	(BP) con	ťd	
CDR32BP1R0B	1.0	B,C	BP	100	CDR32BP101B	100	FJ,K	BP	100
CDR32BP1R1B	1.1	B,C	BP	100	CDR32BP111B	110	FJ,K	BP	100
CDR32BP1R2B	1.2	B,C	BP	100	CDR32BP121B	120	FJ,K	BP	100
CDR32BP1R3B	1.3	B,C	BP	100	CDR32BP131B	130	FJ,K	BP	100
CDR32BP1R5B	1.5	B,C	BP	100	CDR32BP151B	150	FJ,K	BP	100
DR32BP1R6B	1.6	B,C	BP	100	CDR32BP161B	160	FJ,K	BP	100
DR32BP1R8B	1.8	B,C	BP	100	CDR32BP181B	180	F,J,K	BP	100
DR32BP2R0B	2.0	B,C	BP	100	CDR32BP201B	200	FJ,K	BP	100
DR32BP2R2B	2.2	B,C	BP	100	CDR32BP221B	220	F,J,K	BP	100
CDR32BP2R4B	2.4	B,C	BP	100	CDR32BP241B	240	FJ,K	BP	100
DR32BP2R7B	2.7	B,C,D	BP	100	CDR32BP271B	270	FJ,K	BP	100
DR32BP3R0B	3.0	B,C,D	BP	100	CDR32BP301B	300	F,J,K	BP	100
DR32BP3R3B	3.3	B,C,D	BP	100	CDR32BP331B	330	FJ,K	BP	100
DR32BP3R6B	3.6	B,C,D	BP	100	CDR32BP361B	360	F,J,K	BP	100
DR32BP3R9B	3.9	B,C,D	BP	100	CDR32BP391B	390	FJ,K	BP	100
DR32BP4R3B	4.3	B,C,D	BP	100	CDR32BP431B	430	FJ,K	BP	100
DR32BP4R3B	4.3	B,C,D B,C,D	BP	100	CDR32BP431B	430		BP	100
DR32BP4R7B	5.1	B,C,D B,C,D	BP	100	CDR32BP471B	510	F,J,K FJ,K	BP	100
	5.6		BP BP	100		560		BP BP	100
DR32BP5R6B	6.2	B,C,D	BP BP	100	CDR32BP561B	620	F,J,K	BP BP	100
DR32BP6R2B		B,C,D			CDR32BP621B		FJ,K		
DR32BP6R8B	6.8	B,C,D	BP	100	CDR32BP681B	680	FJ,K	BP	100
DR32BP7R5B	7.5	B,C,D	BP	100	CDR32BP751B	750	F,J,K	BP	100
DR32BP8R2B	8.2	B,C,D	BP	100	CDR32BP821B	820	FJ,K	BP	100
DR32BP9R1B	9.1	B,C,D	BP	100	CDR32BP911B	910	F,J,K	BP	100
DR32BP100B	10	FJ,K	BP	100	CDR32BP102B	1,000	FJ,K	BP	100
DR32BP110B	11	F,J,K	BP	100	CDR32BP112A	1,100	FJ,K	BP	50
DR32BP120B	12	FJ,K	BP	100	CDR32BP122A	1,200	F,J,K	BP	50
DR32BP130B	13	FJ,K	BP	100	CDR32BP132A	1,300	FJ,K	BP	50
DR32BP150B	15	FJ,K	BP	100	CDR32BP152A	1,500	F,J,K	BP	50
CDR32BP160B	16	FJ,K	BP	100	CDR32BP162A	1,600	FJ,K	BP	50
DR32BP180B	18	FJ,K	BP	100	CDR32BP182A	1,800	FJ,K	BP	50
DR32BP200B	20	F,J,K	BP	100	CDR32BP202A	2,000	F,J,K	BP	50
DR32BP220B	22	FJ,K	BP	100	CDR32BP222A	2,200	FJ,K	BP	50
DR32BP240B	24	F,J,K	BP	100					
DR32BP270B	27	FJ,K	BP	100	AVX Style 12	06/CDR32	(BX)		
DR32BP300B	30	FJ,K	BP	100	· · · · · · · · · · · · · · · · · · ·		()	1	1
DR32BP330B	33	F,J,K	BP	100	CDR32BX472B	4,700	K,M	BX	100
DR32BP360B	36	FJ,K	BP	100	CDR32BX562B	5,600	K,M	BX	100
DR32BP390B	39	F,J,K	BP	100	CDR32BX682B	6,800	K,M	BX	100
CDR32BP430B	43	FJ,K	BP	100	CDR32BX822B	8,200	K,M	BX	100
DR32BP470B	47	FJ,K	BP	100	CDR32BX103B	10,000	K,M	BX	100
	47 51		BP BP	100	CDR32BX123B	12,000	K,M	BX	100
DR32BP510B	56	F,J,K	BP BP	100	CDR32BX153B	15.000	K,M	BX	100
CDR32BP560B	62	FJ,K	BP BP	100	CDR32BX183A	18.000	K,M	BX	50
DR32BP620B		F,J,K			CDR32BX223A	22,000	K,M	BX	50
DR32BP680B	68	FJ,K	BP	100	CDR32BX273A	27,000	K,M	BX	50
DR32BP750B	75	FJ,K	BP	100	CDR32BX333A	33.000		BX	50
CDR32BP820B	82	F,J,K	BP	100			K,M	BX	
CDR32BP910B	91	FJ.K	BP	100	CDR32BX393A	39.000	K,M	ВХ	50

-0022+ клн DDE_55601/0

Add appropriate termination finish

Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Capacitance Tolerance

Add appropriate termination finish

Military Part Number Identification CDR33/34/35

WVDC

100

100

100

100

100

50

50

50

50

Rated temperature

and voltage-

temperature limits

ВΧ

ВΧ

ВΧ

ВΧ

ВΧ

ВΧ

ВΧ

ВΧ

ВΧ

		CD	R33/34/35 t	o MII	-PRF-55681/9/10/11	
Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC		apacita oleran
AVX Style 12	210/CDR33	(BP)			AVX Style 1812/CDR34 (E	BX)
CDR33BP102B	1,000	FJ,K	BP	100	CDR34BX273B 27.000	K,M
CDR33BP112B	1,100	FJ,K	BP	100	CDR34BX333B 33.000	K,M
CDR33BP122B	1,200	FJ,K	BP	100	CDR34BX393B 39.000	K,M
CDR33BP132B	1,300	FJ,K	BP	100	CDR34BX473B 47.000	K,M
CDR33BP152B	1,500	FJ,K	BP	100	CDR34BX563B 56.000	K,M
CDR33BP162B	1,600	FJ,K	BP	100	CDR34BX104A 100,000	K,M
CDR33BP182B	1,800	F,J,K	BP	100	CDR34BX124A 120,000	K,M
CDR33BP202B	2,000	FJ,K	BP	100	CDR34BX154A 150.000	K,M
CDR33BP222B	2,200	F,J,K	BP	100	CDR34BX184A 180.000	K,M
CDR33BP242A	2,400	FJ,K	BP	50	AVA OF A TOOL ODDOL ()
CDR33BP272A	2,700	FJ,K	BP	50	AVX Style 1825/CDR35 (E	SP)
CDR33BP302A	3,000	F,J,K	BP	50	CDR35BP472B 4.700	FJ.K
CDR33BP332A	3,300	FJ,K	BP	50	CDR35BP472B 4,700 CDR35BP512B 5.100	FJ,K F,J,K
AVX Style 12	010/CDR33	(RY)			CDR35BP562B 5,600	FJ,K
AVA Style 12					CDR35BP622B	F,J,K
CDR33BX153B	15.000	K,M	BX	100	CDR35BP682B 6,800	FJ,K
CDR33BX183B	18.000	K,M	BX	100	CDR35BP752B 7,500	FJ,K
CDR33BX223B	22,000	K,M	BX	100	CDR35BP822B 8,200	F,J,K
CDR33BX273B	27.000	K,M	BX	100	CDR35BP912B 9,100	FJ,K
CDR33BX393A	39.000	K,M	BX	50	CDR35BP103B 10,000	FJ,K
CDR33BX473A	47.000	K,M	BX	50	CDR35BP113A 11,000	F,J,K
CDR33BX563A	56.000	K,M	BX	50	CDR35BP123A 12,000	FJ,K
CDR33BX683A	68.000	K,M	BX	50	CDR35BP133A 13.000	F,J,K
CDR33BX823A CDR33BX104A	82,000	K,M K,M	BX BX	50 50	CDR35BP153A 15.000	FJ,K
CDR33BX104A	100,000	κ,ινι	ВА	50	CDR35BP163A 16.000	F,J,K
AVX Style 18	312/CDR34	(BP)			CDR35BP183A 18,000	FJ,K
	1		1		CDR35BP203A 20,000	FJ,K
CDR34BP222B	2,200	FJ,K	BP	100	CDR35BP223A 22,000	F,J,K
CDR34BP242B	2,400	F,J,K FJ,K	BP BP	100	AVV Stude 1925/CDD25 (F	NN(
CDR34BP272B CDR34BP302B	2,700 3,000	FJ,K F,J,K	BP BP	100 100	AVX Style 1825/CDR35 (E)
CDR34BP332B	3,300	FJ,K	BP	100	CDR35BX563B 56.000	K,M
CDR34BP362B	3,600	FJ,K	BP	100	CDR35BX683B 68.000	K,M
CDR34BP302B	3,900	F,J,K	BP	100	CDR35BX823B 82,000	K,M
CDR34BP432B	4,300	FJ,K	BP	100	CDR35BX104B 100,000	K,M
CDR34BP472B	4,700	F,J,K	BP	100	CDR35BX124B 120,000	K,M
CDR34BP512A	5,100	FJ,K	BP	50	CDR35BX154B 150.000	K,M
CDR34BP562A	5,600	FJ.K	BP	50	CDR35BX184A 180.000	, К,М
CDR34BP622A	6,200	F,J,K	BP	50	CDR35BX224A 220,000	K,M
CDR34BP682A	6,800	FJ,K	BP	50	CDR35BX274A 270.000	K,M
CDR34BP752A	7,500	F,J,K	BP	50	CDR35BX334A 330.000	K,M
CDR34BP822A	8,200	FJ,K	BP	50	CDR35BX394A 390.000	K,M
CDR34BP912A	9,100	FJ,K	BP	50	CDR35BX474A 470.000	K,M
CDR34BP103A	10,000	F,J,K	BP	50		
L	I	I	1]		

CDR33/34/35	to MIL-PRF-55681/9/10/	11

Capacitance

tolerance

K,M K,M

K,M

K,M

K,M

K,M

K,M

к,́М

AVX Style 1825/CDR35 (BP)								
CDR35BP472B CDR35BP512B CDR35BP562B CDR35BP682B CDR35BP682B CDR35BP752B CDR35BP12B CDR35BP103B CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP13A CDR35BP163A CDR35BP183A	4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000 11,000 12,000 13,000 15,000 16,000 18,000	EJ,K FJ,K FJ,K FJ,K FJ,K FJ,K FJ,K FJ,K F	8P 8P 8P 8P 8P 8P 8P 8P 8P 8P 8P 8P 8P 8	100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50				
CDR35BP203A CDR35BP223A	20,000 22,000	FJ,K F,J,K	BP BP	50 50				
AVX Style 18	25/CDR35	(BX)						
CDR35BX563B CDR35BX683B CDR35BX104B CDR35BX104B CDR35BX154B CDR35BX154B CDR35BX224A CDR35BX224A CDR35BX274A CDR35BX34A CDR35BX394A CDR35BX474A	56.000 68.000 82,000 120,000 150.000 180.000 220,000 270.000 330.000 390.000 470.000	K,M K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX BX BX B	100 100 100 100 100 50 50 50 50 50 50 50				

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

_	Add	appropriate	failure	rate

Add appropriate termination finish

Capacitance Tolerance

MLCC Medical Applications – MM Series

General Specifications

The AVX MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

APPLICATIONS

Implantable, Non-Life Supporting Medical Devices

• e.g. implanted temporary cardiac monitor, insulin pumps

External, Life Supporting Medical Devices

• e.g. heart pump external controller

External Devices

• e.g. patient monitoring, diagnostic equipment

HOW TO ORDER

COMMERCIAL VS MM SERIES PROCESS COMPARISON

	Commercial	MM Series
Administrative	Standard part numbers; no restriction on who purchases these parts	Specific series part number, used to control supply of product
Design	Minimum ceramic thickness of 0.020" on all X7R product	Minimum ceramic thickness of 0.029" (0.74mm)
Dicing	Side & end margins = 0.003" min	Side & end margins = 0.004" min Cover layers = 0.003" min
Lot Qualification Destructive Physical Analysis (DPA)	As per EIA RS469	Increased sample plan – stricter criteria
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing
Design/Change Control	Required to inform customer of changes in: • form • fit • function	 AVX will qualify and notify customers before making any change to the following materials or processes: Dielectric formulation, type, or supplier Metal formulation, type, or supplier Termination material formulation, type, or supplier Manufacturing equipment type Quality testing regime including sample size and accept/ reject criteria

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

NP0 (C0G) - Specifications & Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring	Conditions				
	perature Range	-55°C to +125°C	Temperature C	4				
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 109	% for cap ≤ 1000 pF				
(2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% fo Voltage: 1.0	Vrms ± .2V				
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 60 ± 5 secs @ room					
Dielectric	Strength	No breakdown or visual defects	Charge device with 300 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) n 150% of rated voltag				
	Appearance	No defects	Deflectio	n [.] 2mm				
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Test Time: 3					
Flexure Stresses	Q	Meets Initial Values (As Above)						
	Insulation Resistance	≥ Initial Value x 0.3	90 r	mm				
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.1					
	Appearance	No defects, <25% leaching of either end terminal	-					
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater						
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 6 seconds. Store at room temperature for 24 ± hours before measuring electrical propertie					
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at room	and measure after m temperature				
	Appearance	No visual defects	-					
	Capacitance Variation	\leq ±3.0% or ± .3 pF, whichever is greater	Charge device with twic chamber set a					
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou	ırs (+48, -0).				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test cha room temperatu before me	re for 24 hours				
	Dielectric Strength	Meets Initial Values (As Above)		sacarnig.				
	Appearance	No visual defects						
	Capacitance Variation	$\leq \pm 5.0\%$ or $\pm .5$ pF, whichever is greater	Store in a test chamber	cat at 8500 + 200/ 05				
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	± 5% relative humid (+48, -0) with rated	lity for 1000 hours I voltage applied.				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 h					
	Dielectric Strength	Meets Initial Values (As Above)						

NP0/C0G Capacitance Range

PREFERRED SIZES ARE SHADED

SIZ	E		06	603				0805				1206	
	WVDC	16	25	50	100	16	25	50	100	16	25	50	100
Cap 0.5	0R5												
(pF) 1.0													
1.2	1R2												
1.5	1R5												
1.8	1R8												
2.2													
2.7	2R7												
3.3													
3.9													
4.7													
5.6	5R6												
6.8	6R8												
8.2													
10													
12	120												
15	150							1			1		1
18	180						1	1			1		1
22	220												
27	270						İ	İ			İ		İ
33							1	1			1		1
39							1	1			1		1
47	470										1		1
56													
68	680												
82													
100	101												
120											1		1
150							1	1			1		1
180													
220													
270													
330					i – – –								
390					1								
470													
560	561												
680													
820													
1000													
1200													
1500													
WVD		16	25	50	100	16	25	50	100	16	25	50	100
SIZ				603		0805						1206	

113016

Paramet	ter/Test	X7R Specification Limits	Measuring (Conditions			
Operating Tem		-55°C to +125°C	Temperature C	ycle Chamber			
Capac	itance	Within specified tolerance					
C	2	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'	Vrms ± .2V			
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rate secs @ room te				
Dielectric	Strength	No breakdown or visual defects	Charge device with 300 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V of	and discharge current mA (max) 150% of rated voltag			
	Appearance	No defects	Deflection: 2mm Test Time: 30 seconds				
Resistance to	Capacitance Variation	≤ ±12%					
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)					
	Insulation Resistance	≥ Initial Value x 0.3	90 mm				
Solder		≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5				
	Appearance	No defects, <25% leaching of either end terminal	-				
	Capacitance Variation	≤ ±7.5%	-				
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ±			
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.			
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes			
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes			
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes			
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes			
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro				
	Appearance	No visual defects					
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	ated voltage (≤ 10V) i at 125°C ± 2°C			
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	ırs (+48, -0)			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chan room temperature for	24 ± 2 hours before			
	Dielectric Strength	Meets Initial Values (As Above)	measu	ining.			
	Appearance	No visual defects					
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s ± 5% relative humid				
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	l voltage applied.			
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature an	e from chamber and stabilize at room temperature and humidity for			
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours before measuring.				

X7R Capacitance Range

PREFERRED SIZES ARE SHADED

<u> </u>	SIZE			040	2			0	60)3					(080)5						12	06							12	10				18	808			181	12		2	2220)
	N	NVDC	16	25	50	10	16	2	5 1	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200/2	50 50	10	50	100 2	00	50	100	200	250	25	50	100
Сар	220	221		2.5	30	10		2	<u> </u>	50	100	200	10	10	2.5	50	100	1200	2.50	10	10	25	50	100	200	2.30	300	10	10	23	50	1001	200 2			30	100 2		30	100	200	230	23	50	100
(pF)	270	271					1	+	+		_							1																	+								-		
	330	331					1	+	+																																		-		
	390	391				1	1	+	+								1																		+								\neg		
	470	471					1	+	+									1																	+								-		_
	560	561					1	+	+									1																									1		
	680	681					1	-	+																																		1		
	820	821					1	1	+																																		1		
	1000	102																																									1		
	1200	122																1																									1		
	1500	152				1		1	T	Ì				İ –			1																			1									
	1800	182																																											
	2200	222																																									1		
	2700	272																																									\neg		
	3300	332																																											
	3900	392																																											
	4700	472																																											
	5600	562																1																		1									
	6800	682																																											_
	8200	822																																											
	0.010	103																1																											
	0.012	123																1																						1					
	0.015	153			Ì		1											1																						1					
	0.018	183																																											
	0.022	223																																									Т		
	0.027	273																																											
	0.033	333																	1																										
	0.039	393																																									Т		
	0.047	473																																									Т		
	0.056	563			Ì		1																																	1					
	0.068	683																																											_
	0.082	823																	1																								Т		_
	0.10	104																																											
	0.12	124							T																																				
	0.15	154							T																																				
	0.22	224							T																																				
	0.33	334							T																																				
	0.47	474							T																																				
	0.56	564							T																																				
	0.68	684							T																																				
	0.82	824																																											
	1.0	105							T																																				
	1.2	125																																											
	1.5	155							T																													Τ							
	WVDC		16	25	50	10	16	2	5 !	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200 2	250 50	00	50	100 2	00	50	100	200	250	25	50	100
	SIZE			040	-)60							080							12								12						308			181				222	

TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

	4mm	8mm	12mm	
Paper or Embossed Carrier		0612, 0508, 0805, 1206, 1210		
Embossed Only	0101		1808	1812, 1825 2220, 2225
Paper Only		0101, 0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	4,000	1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel		5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W₂ Max.	W ₃
4mm	1.80 (7.087)	1.5 (0.059)	13.0±0.5 (0.522±0.020)	20.2 (0.795)	60.0 (2.362)	4.35±0.3 (0.171±0.011)	7.95 (0.312)	
8mm	330	1.5	13.0 ^{+0.50}	20.2	50.0	$8.40_{-0.0}^{+1.5} \\ (0.331_{-0.0}^{+0.059})$	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm	(12.992)	(0.059)	$(0.512^{+0.020}_{-0.008})$	(0.795)	(1.969)	$12.4^{+2.0}_{-0.0} \\ (0.488^{+0.079}_{-0.0})$	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)

Metric dimensions will govern.

English measurements rounded and for reference only.

(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.

Embossed Carrier Configuration

4, 8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

Tape Size	Do	E ₁	P ₀	P ₂	S ₁ Min.	T Max.	T₁ Max.
4mm	0.80±0.04	0.90±0.05	2.0±0.04	1.00±0.02	1.075	0.26	0.06
	(0.031±0.001)	(0.035±0.001)	(0.078±0.001)	(0.039±0.0007)	(0.042)	(0.010)	(0.002)
8mm	$\frac{1.50}{(0.059^{+0.004}_{-0.0})}$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
& 12mm		(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)

VARIABLE DIMENSIONS

Tape Size	B₁ Max.	D ₁ Min.	E₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	A ₀ B ₀ K ₀
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1

NOTES:

1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:

b) the component does not protrude beyond the sealing plane of the cover tape. c) the component can be removed from the cavity in a vertical direction without

mechanical restriction, after the cover tape has been removed.

d) rotation of the component is limited to 20° maximum (see Sketches D & E).

e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).

2. Tape with or without components shall pass around radius "R" without damage.

Top View, Sketch "F" Component Lateral Movements 0.50mm (0.020) Maximum 0.50mm (0.020) Maximum

 Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
 B₁ dimension is a reference dimension for tape feeder clearance only.

5. If $P_1 = 2.0$ mm, the tape may not properly index in all tape feeders.

4, 8 & 12mm Embossed Tape **Metric Dimensions Will Govern**

CONSTANT DIMENSIONS

Tape Size	Do	Е	Po	P ₂	T ₁	G. Min.	R Min.
8mm and 12mm	$1.50^{+0.10}_{-0.0} \\ (0.059^{+0.004}_{-0.0})$	1.75 ± 0.10 (0.069 ± 0.004)	4.00 ± 0.10 (0.157 ± 0.004)	2.00 ± 0.05 (0.079 ± 0.002)	0.10 (0.004) Max.	0.75 (0.030) Min.	25.0 (0.984) See Note 2 Min.

VARIABLE DIMENSIONS

Tape Size	P ₁ See Note 4	E ₂ Min.	F	W	A ₀ B ₀	т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})	See Note 1	1.10mm (0.043) Max.
12mm	4.00 ± 0.10 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})		1.60mm
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		(0.063) Max. for Non-Paper Base Compositions

NOTES:

1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:

a) the component does not protrude beyond either surface of the carrier tape;

b)) the component can be removed from the cavity in a vertical direction without

mechanical restriction after the top cover tape has been removed;

c) rotation of the component is limited to 20° maximum (see Sketches A & B);

d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).

2. Tape with or without components shall pass around radius "R" without damage.

3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.

4. If P₁ = 2.0mm, the tape may not properly index in all tape feeders.

Bar Code Labeling Standard

AVX bar code labeling is available and follows latest version of EIA-556

Basic Capacitor Formulas

I. Capacitance (farads)

English: C = $\frac{.224 \text{ KA}}{\text{T}_{\text{D}}}$ Metric: C = $\frac{.0884 \text{ KA}}{\text{T}_{\text{D}}}$

II. Energy stored in capacitors (Joules, watt - sec) E = $\frac{1}{2}$ CV^2

III. Linear charge of a capacitor (Amperes)

 $I = C \ \frac{dV}{dt}$

IV. Total Impedance of a capacitor (ohms)

 $Z = \sqrt{R_s^2 + (X_C - X_L)^2}$

V. Capacitive Reactance (ohms)

$$x_{\rm C} = \frac{1}{2 \pi \, \rm fC}$$

VI. Inductive Reactance (ohms) $x_1 = 2 \pi fL$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.= tan
$$\delta$$
 (loss angle) = $\frac{\text{E.S.R.}}{X_{\text{C}}}$ = (2 π fC) (E.S.R.)

SYMBOLS

IX. Power Factor (%)

P.F. = Sine (loss angle) = Cos φ (phase angle) P.F. = (when less than 10%) = DF

X 10+3

X 10⁺⁶

X 10⁺⁹ X 10⁺¹²

X. Quality Factor (dimensionless)

METRIC PREFIXES

Pico Nano Micro Milli

Deci

Deca

Kilo

Mega

Giga

Tera

$$Q = Cotan \delta$$
 (loss angle) $= \frac{1}{D.F.}$

XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2 π fC) XII. Power Loss (watts)

Power Loss = $(2 \pi fCV^2)$ (D.F.) XIII. KVA (Kilowatts) KVA = $2 \pi fCV^2 \times 10^{-3}$

XIV. Temperature Characteristic (ppm/°C)

T.C. =
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1} \times 100$$

XVI. Reliability of Ceramic Capacitors

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} - \frac{1}{C_{N}}$$

Two: $C_{T} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$

XVIII. Capacitors in Parallel (voltage the same) $C_T = C_1 + C_2 - C_N$

XIX. Aging Rate A.R. = $\%\Delta$ C/decade of time

XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

X 10 ⁻¹²	K = Dielectric Constant	f = frequency	L _t = Test life
X 10 ⁻⁹	A = Area	L = Inductance	V _t = Test voltage
X 10⁻⁵	T_{D} = Dielectric thickness	δ = Loss angle	V_{o} = Operating voltage
X 10-₃	V = Voltage	φ = Phase angle	T _t = Test temperature
X 10 ⁻¹	t = time	X & Y = exponent effect of voltage and temp.	T_{o} = Operating temperature
X 10 ⁺¹	R _s = Series Resistance	L _o = Operating life	

Basic Construction – A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in

today's electronic equipment.

Formulations – Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NP0) temperature compensating capacitors (negative-positive 0 ppm/°C).

Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only $\pm 15\%$ over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.

Table 1: EIA and MIL Temperature Stable and General Application Codes

EIA CODE Percent Capacity Change Over Temperature Range					
RS198	Temperature Range				
Х7	-55°C to +125°C				
Х6	-55°C to +105°C				
X5	-55°C to +85°C				
Y5	-30°C to +85°C				
Z5	+10°C to +85°C				
Code	Percent Capacity Change				
D	±3.3%				
E	±4.7%				
F	±7.5%				
Р	±10%				
R	±15%				
S	±22%				
Т	+22%, -33%				
U	+22%, - 56%				
V	+22%, -82%				
EXAMPLE – A capacitor is	EXAMPLE – A capacitor is desired with the capacitance value at 25°C to				

increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

MIL CODE						
Symbol	Temperature Range					
A	-55°C to +85°C					
В	-55°C to +125°C					
С	-55°C to +150°C					
Symbol	Cap. Change	Cap. Change				
Symbol	Zero Volts	Rated Volts				
R	+15%, -15%	+15%, -40%				
S	+22%, -22%	+22%, -56%				
W	+22%, -56% +22%, -66%					
Х	+15%, -15% +15%, -25%					
Y	+30%, -70% +30%, -80%					
Z	+20%, -20% +20%, -30%					
Temperature characteristic is specified by combining range and change						
symbols, for example BR or AW. Specification slash sheets indicate the						
characteristic applicable to a given style of capacitor.						

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

Figure 2

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

D.F. vs. A.C. Measurement Volts X7R

Figure 3

Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twentyfour hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Effects of Mechanical Stress – High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

- L_{o} = operating life
- L_t = test life
- V_t = test voltage
- V_o = operating voltage

T_t = test temperature and

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

- **C** = capacitance (picofarads)
- K = dielectric constant (Vacuum = 1)
- A = area in square inches
- t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10^{-6}) , nano (10^{-9}) or pico (10^{-12}) farad level.

Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored – The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^{2}$$

E = energy in joules (watts-sec)
V = applied voltage

C = capacitance in farads

Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

C = Capacitance

dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.

Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

- **C** = Capacitance
- \mathbf{R}_{s} = Series Resistance
- L = Inductance R_n = Parallel Resistance

Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

$$Z = \sqrt{R_{\rm S}^2 + (X_{\rm C} - X_{\rm L})^2}$$

where

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

Power Factor (P.F.) = Cos ϕ or Sine δ Dissipation Factor (D.F.) = tan δ

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance – The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor – The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{X_{\odot}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss = $(2 \pi fCV^2)$ (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance – The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

The $\frac{di}{dt}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$\frac{1}{2\pi\sqrt{LC}}$$

f

Insulation Resistance – Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength – Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.

Dielectric Absorption – A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

Corona – Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

Surface Mounting Guide

MLC Chip Capacitors

REFLOW SOLDERING

	Case Size	D1	D2	D3	D4	D5
	0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
D2	0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
<u>+</u> L [0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
5.0	0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
)1 D3	1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
	1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
	1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
D4	1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
↓	1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
	2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	5.00 (0.197)
→ D5 🖛 🛛	2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Dimensions in millimeters (inches)

Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

$\begin{array}{c|c} & \uparrow \\ & D2 \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & D4 \\ & \downarrow$

WAVE SOLDERING

Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.

For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

Surface Mounting Guide Recommended Soldering Profiles

REFLOW SOLDER PROFILES

AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/ JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125° C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180° C).

Reflow:

In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

Cool Down:

Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

WAVE SOLDER PROFILES

For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

Preheat:

This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.

Wave:

250°C - 260°C recommended for optimum solderability.

Cool Down:

As with reflow solder, cool down should not be forced and 6° C/sec is recommended. Any air knives at the end of the 2nd wave should be heated.

IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.

Surface Mounting Guide

MLC Chip Capacitors

APPLICATION NOTES

Storage

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at $245^{\circ}C$ +/- $5^{\circ}C$ for 5 +0/-0.5 seconds.

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/	Solder	Immersion
	Lead/Silver	Temp °C	Time Seconds
Nickel Barrier	60/40/0	260 ± 5	30 ± 1

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is 250° C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

Surface Mounting Guide

MLC Chip Capacitors

POST SOLDER HANDLING

Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:

Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

COMMON CAUSES OF MECHANICAL CRACKING

The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.

Type A: Angled crack between bottom of device to top of solder joint.

Type B: Fracture from top of device to bottom of device.

REWORKING OF MLCS

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.

However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. *Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.*

Preferred Method - No Direct Part Contact

PCB BOARD DESIGN

To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

130

FOLLOW US: 🖸 🗹 🖬 🕩 in

VISIT US AT WWW.AVX.COM

North America Tel: +1 864-967-2150

Central America Tel: +55 11-46881960 **Europe** Tel: +44 1276-697000 **Asia** Tel: +65 6286-7555

Japan Tel: +81 740-321250